Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 247b28499c443e092731ffba814075f2 > files > 67

mpqc-html-2.3.1-9mdv2010.0.i586.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<title>MPQC: macros.h Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css">
<link href="doxygen.css" rel="stylesheet" type="text/css">
</head><body>
<!-- Generated by Doxygen 1.5.9 -->
<div class="navigation" id="top">
  <div class="tabs">
    <ul>
      <li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
      <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
    </ul>
  </div>
  <div class="tabs">
    <ul>
      <li><a href="files.html"><span>File&nbsp;List</span></a></li>
    </ul>
  </div>
<h1>macros.h</h1><div class="fragment"><pre class="fragment"><a name="l00001"></a>00001 <span class="comment">//</span>
<a name="l00002"></a>00002 <span class="comment">// macros.h</span>
<a name="l00003"></a>00003 <span class="comment">//</span>
<a name="l00004"></a>00004 <span class="comment">// Copyright (C) 2001 Edward Valeev</span>
<a name="l00005"></a>00005 <span class="comment">//</span>
<a name="l00006"></a>00006 <span class="comment">// Author: Edward Valeev &lt;edward.valeev@chemistry.gatech.edu&gt;</span>
<a name="l00007"></a>00007 <span class="comment">// Maintainer: EV</span>
<a name="l00008"></a>00008 <span class="comment">//</span>
<a name="l00009"></a>00009 <span class="comment">// This file is part of the SC Toolkit.</span>
<a name="l00010"></a>00010 <span class="comment">//</span>
<a name="l00011"></a>00011 <span class="comment">// The SC Toolkit is free software; you can redistribute it and/or modify</span>
<a name="l00012"></a>00012 <span class="comment">// it under the terms of the GNU Library General Public License as published by</span>
<a name="l00013"></a>00013 <span class="comment">// the Free Software Foundation; either version 2, or (at your option)</span>
<a name="l00014"></a>00014 <span class="comment">// any later version.</span>
<a name="l00015"></a>00015 <span class="comment">//</span>
<a name="l00016"></a>00016 <span class="comment">// The SC Toolkit is distributed in the hope that it will be useful,</span>
<a name="l00017"></a>00017 <span class="comment">// but WITHOUT ANY WARRANTY; without even the implied warranty of</span>
<a name="l00018"></a>00018 <span class="comment">// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the</span>
<a name="l00019"></a>00019 <span class="comment">// GNU Library General Public License for more details.</span>
<a name="l00020"></a>00020 <span class="comment">//</span>
<a name="l00021"></a>00021 <span class="comment">// You should have received a copy of the GNU Library General Public License</span>
<a name="l00022"></a>00022 <span class="comment">// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to</span>
<a name="l00023"></a>00023 <span class="comment">// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.</span>
<a name="l00024"></a>00024 <span class="comment">//</span>
<a name="l00025"></a>00025 <span class="comment">// The U.S. Government is granted a limited license as per AL 91-7.</span>
<a name="l00026"></a>00026 <span class="comment">//</span>
<a name="l00027"></a>00027 
<a name="l00028"></a>00028 <span class="comment">/* True if the integral is nonzero. */</span>
<a name="l00029"></a>00029 <span class="preprocessor">#define INT_NONZERO(x) (((x)&lt; -1.0e-15)||((x)&gt; 1.0e-15))</span>
<a name="l00030"></a>00030 <span class="preprocessor"></span>
<a name="l00031"></a>00031 <span class="comment">/* Computes an index to a Cartesian function within a shell given</span>
<a name="l00032"></a>00032 <span class="comment"> * am = total angular momentum</span>
<a name="l00033"></a>00033 <span class="comment"> * i = the exponent of x (i is used twice in the macro--beware side effects)</span>
<a name="l00034"></a>00034 <span class="comment"> * j = the exponent of y</span>
<a name="l00035"></a>00035 <span class="comment"> * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0</span>
<a name="l00036"></a>00036 <span class="comment"> * The following loop will generate indices in the proper order:</span>
<a name="l00037"></a>00037 <span class="comment"> *  cartindex = 0;</span>
<a name="l00038"></a>00038 <span class="comment"> *  for (i=am; i&gt;=0; i--) {</span>
<a name="l00039"></a>00039 <span class="comment"> *    for (j=am-i; j&gt;=0; j--) {</span>
<a name="l00040"></a>00040 <span class="comment"> *      do_it_with(cartindex);</span>
<a name="l00041"></a>00041 <span class="comment"> *      cartindex++;</span>
<a name="l00042"></a>00042 <span class="comment"> *      }</span>
<a name="l00043"></a>00043 <span class="comment"> *    }</span>
<a name="l00044"></a>00044 <span class="comment"> */</span>
<a name="l00045"></a>00045 <span class="preprocessor">#define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))&gt;&gt;1) + (am) - (i) - (j)))</span>
<a name="l00046"></a>00046 <span class="preprocessor"></span>
<a name="l00047"></a>00047 <span class="comment">/* This sets up the above loop over cartesian exponents as follows</span>
<a name="l00048"></a>00048 <span class="comment"> * FOR_CART(i,j,k,am)</span>
<a name="l00049"></a>00049 <span class="comment"> *   Stuff using i,j,k.</span>
<a name="l00050"></a>00050 <span class="comment"> *   END_FOR_CART</span>
<a name="l00051"></a>00051 <span class="comment"> */</span>
<a name="l00052"></a>00052 <span class="preprocessor">#define FOR_CART(i,j,k,am) for((i)=(am);(i)&gt;=0;(i)--) {\</span>
<a name="l00053"></a>00053 <span class="preprocessor">                           for((j)=(am)-(i);(j)&gt;=0;(j)--) \</span>
<a name="l00054"></a>00054 <span class="preprocessor">                           { (k) = (am) - (i) - (j);</span>
<a name="l00055"></a>00055 <span class="preprocessor"></span><span class="preprocessor">#define END_FOR_CART }}</span>
<a name="l00056"></a>00056 <span class="preprocessor"></span>
<a name="l00057"></a>00057 <span class="comment">/* This sets up a loop over all of the generalized contractions</span>
<a name="l00058"></a>00058 <span class="comment"> * and all of the cartesian exponents.</span>
<a name="l00059"></a>00059 <span class="comment"> * gc is the number of the gen con</span>
<a name="l00060"></a>00060 <span class="comment"> * index is the index within the current gen con.</span>
<a name="l00061"></a>00061 <span class="comment"> * i,j,k are the angular momentum for x,y,z</span>
<a name="l00062"></a>00062 <span class="comment"> * sh is the shell pointer</span>
<a name="l00063"></a>00063 <span class="comment"> */</span>
<a name="l00064"></a>00064 <span class="preprocessor">#define FOR_GCCART(gc,index,i,j,k,sh)\</span>
<a name="l00065"></a>00065 <span class="preprocessor">    for ((gc)=0; (gc)&lt;(sh)-&gt;ncon; (gc)++) {\</span>
<a name="l00066"></a>00066 <span class="preprocessor">    (index)=0;\</span>
<a name="l00067"></a>00067 <span class="preprocessor">    FOR_CART(i,j,k,(sh)-&gt;type[gc].am)</span>
<a name="l00068"></a>00068 <span class="preprocessor"></span>
<a name="l00069"></a>00069 <span class="preprocessor">#define FOR_GCCART_GS(gc,index,i,j,k,sh)\</span>
<a name="l00070"></a>00070 <span class="preprocessor">    for ((gc)=0; (gc)&lt;(sh)-&gt;ncontraction(); (gc)++) {\</span>
<a name="l00071"></a>00071 <span class="preprocessor">    (index)=0;\</span>
<a name="l00072"></a>00072 <span class="preprocessor">    FOR_CART(i,j,k,(sh)-&gt;am(gc))</span>
<a name="l00073"></a>00073 <span class="preprocessor"></span>
<a name="l00074"></a>00074 <span class="preprocessor">#define END_FOR_GCCART(index)\</span>
<a name="l00075"></a>00075 <span class="preprocessor">    (index)++;\</span>
<a name="l00076"></a>00076 <span class="preprocessor">    END_FOR_CART\</span>
<a name="l00077"></a>00077 <span class="preprocessor">    }</span>
<a name="l00078"></a>00078 <span class="preprocessor"></span>
<a name="l00079"></a>00079 <span class="preprocessor">#define END_FOR_GCCART_GS(index)\</span>
<a name="l00080"></a>00080 <span class="preprocessor">    (index)++;\</span>
<a name="l00081"></a>00081 <span class="preprocessor">    END_FOR_CART\</span>
<a name="l00082"></a>00082 <span class="preprocessor">    }</span>
<a name="l00083"></a>00083 <span class="preprocessor"></span>
<a name="l00084"></a>00084 <span class="comment">/* These are like the above except no index is kept track of. */</span>
<a name="l00085"></a>00085 <span class="preprocessor">#define FOR_GCCART2(gc,i,j,k,sh)\</span>
<a name="l00086"></a>00086 <span class="preprocessor">    for ((gc)=0; (gc)&lt;(sh)-&gt;ncon; (gc)++) {\</span>
<a name="l00087"></a>00087 <span class="preprocessor">    FOR_CART(i,j,k,(sh)-&gt;type[gc].am)</span>
<a name="l00088"></a>00088 <span class="preprocessor"></span>
<a name="l00089"></a>00089 <span class="preprocessor">#define END_FOR_GCCART2\</span>
<a name="l00090"></a>00090 <span class="preprocessor">    END_FOR_CART\</span>
<a name="l00091"></a>00091 <span class="preprocessor">    }</span>
<a name="l00092"></a>00092 <span class="preprocessor"></span>
<a name="l00093"></a>00093 <span class="comment">/* These are used to loop over shells, given the centers structure</span>
<a name="l00094"></a>00094 <span class="comment"> * and the center index, and shell index. */</span>
<a name="l00095"></a>00095 <span class="preprocessor">#define FOR_SHELLS(c,i,j) for((i)=0;(i)&lt;(c)-&gt;n;i++) {\</span>
<a name="l00096"></a>00096 <span class="preprocessor">                          for((j)=0;(j)&lt;(c)-&gt;center[(i)].basis.n;j++) {</span>
<a name="l00097"></a>00097 <span class="preprocessor"></span><span class="preprocessor">#define END_FOR_SHELLS }}</span>
<a name="l00098"></a>00098 <span class="preprocessor"></span>
<a name="l00099"></a>00099 <span class="comment">/* Computes the number of Cartesian function in a shell given</span>
<a name="l00100"></a>00100 <span class="comment"> * am = total angular momentum</span>
<a name="l00101"></a>00101 <span class="comment"> * formula: (am*(am+1))/2 + am+1;</span>
<a name="l00102"></a>00102 <span class="comment"> */</span>
<a name="l00103"></a>00103 <span class="preprocessor">#define INT_NCART(am) ((am&gt;=0)?((((am)+2)*((am)+1))&gt;&gt;1):0)</span>
<a name="l00104"></a>00104 <span class="preprocessor"></span>
<a name="l00105"></a>00105 <span class="comment">/* Like INT_NCART, but only for nonnegative arguments. */</span>
<a name="l00106"></a>00106 <span class="preprocessor">#define INT_NCART_NN(am) ((((am)+2)*((am)+1))&gt;&gt;1)</span>
<a name="l00107"></a>00107 <span class="preprocessor"></span>
<a name="l00108"></a>00108 <span class="comment">/* For a given ang. mom., am, with n cartesian functions, compute the</span>
<a name="l00109"></a>00109 <span class="comment"> * number of cartesian functions for am+1 or am-1</span>
<a name="l00110"></a>00110 <span class="comment"> */</span>
<a name="l00111"></a>00111 <span class="preprocessor">#define INT_NCART_DEC(am,n) ((n)-(am)-1)</span>
<a name="l00112"></a>00112 <span class="preprocessor"></span><span class="preprocessor">#define INT_NCART_INC(am,n) ((n)+(am)+2)</span>
<a name="l00113"></a>00113 <span class="preprocessor"></span>
<a name="l00114"></a>00114 <span class="comment">/* Computes the number of pure angular momentum functions in a shell</span>
<a name="l00115"></a>00115 <span class="comment"> * given am = total angular momentum</span>
<a name="l00116"></a>00116 <span class="comment"> */</span>
<a name="l00117"></a>00117 <span class="preprocessor">#define INT_NPURE(am) (2*(am)+1)</span>
<a name="l00118"></a>00118 <span class="preprocessor"></span>
<a name="l00119"></a>00119 <span class="comment">/* Computes the number of functions in a shell given</span>
<a name="l00120"></a>00120 <span class="comment"> * pu = pure angular momentum boolean</span>
<a name="l00121"></a>00121 <span class="comment"> * am = total angular momentum</span>
<a name="l00122"></a>00122 <span class="comment"> */</span>
<a name="l00123"></a>00123 <span class="preprocessor">#define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))</span>
<a name="l00124"></a>00124 <span class="preprocessor"></span>
<a name="l00125"></a>00125 <span class="comment">/* Given a centers pointer and a shell number, this evaluates the</span>
<a name="l00126"></a>00126 <span class="comment"> * pointer to that shell. */</span>
<a name="l00127"></a>00127 <span class="preprocessor">#define INT_SH(c,s) ((c)-&gt;center[(c)-&gt;center_num[s]].basis.shell[(c)-&gt;shell_num[s]])</span>
<a name="l00128"></a>00128 <span class="preprocessor"></span>
<a name="l00129"></a>00129 <span class="comment">/* Given a centers pointer and a shell number, get the angular momentum</span>
<a name="l00130"></a>00130 <span class="comment"> * of that shell. */</span>
<a name="l00131"></a>00131 <span class="preprocessor">#define INT_SH_AM(c,s) ((c)-&gt;center[(c)-&gt;center_num[s]].basis.shell[(c)-&gt;shell_num[s]].type.am)</span>
<a name="l00132"></a>00132 <span class="preprocessor"></span>
<a name="l00133"></a>00133 <span class="comment">/* Given a centers pointer and a shell number, get pure angular momentum</span>
<a name="l00134"></a>00134 <span class="comment"> * boolean for that shell. */</span>
<a name="l00135"></a>00135 <span class="preprocessor">#define INT_SH_PU(c,s) ((c)-&gt;center[(c)-&gt;center_num[s]].basis.shell[(c)-&gt;shell_num[s]].type.puream)</span>
<a name="l00136"></a>00136 <span class="preprocessor"></span>
<a name="l00137"></a>00137 <span class="comment">/* Given a centers pointer, a center number, and a shell number,</span>
<a name="l00138"></a>00138 <span class="comment"> * get the angular momentum of that shell. */</span>
<a name="l00139"></a>00139 <span class="preprocessor">#define INT_CE_SH_AM(c,a,s) ((c)-&gt;center[(a)].basis.shell[(s)].type.am)</span>
<a name="l00140"></a>00140 <span class="preprocessor"></span>
<a name="l00141"></a>00141 <span class="comment">/* Given a centers pointer, a center number, and a shell number,</span>
<a name="l00142"></a>00142 <span class="comment"> * get pure angular momentum boolean for that shell. */</span>
<a name="l00143"></a>00143 <span class="preprocessor">#define INT_CE_SH_PU(c,a,s) ((c)-&gt;center[(a)].basis.shell[(s)].type.puream)</span>
<a name="l00144"></a>00144 <span class="preprocessor"></span>
<a name="l00145"></a>00145 <span class="comment">/* Given a centers pointer and a shell number, compute the number</span>
<a name="l00146"></a>00146 <span class="comment"> * of functions in that shell. */</span>
<a name="l00147"></a>00147 <span class="comment">/* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */</span>
<a name="l00148"></a>00148 <span class="preprocessor">#define INT_SH_NFUNC(c,s) ((c)-&gt;center[(c)-&gt;center_num[s]].basis.shell[(c)-&gt;shell_num[s]].nfunc)</span>
<a name="l00149"></a>00149 <span class="preprocessor"></span>
<a name="l00150"></a>00150 <span class="comment">/* These macros assist in looping over the unique integrals</span>
<a name="l00151"></a>00151 <span class="comment"> * in a shell quartet.  The exy variables are booleans giving</span>
<a name="l00152"></a>00152 <span class="comment"> * information about the equivalence between shells x and y.  The nx</span>
<a name="l00153"></a>00153 <span class="comment"> * variables give the number of functions in each shell, x. The</span>
<a name="l00154"></a>00154 <span class="comment"> * i,j,k are the current values of the looping indices for shells 1, 2, and 3.</span>
<a name="l00155"></a>00155 <span class="comment"> * The macros return the maximum index to be included in a summation</span>
<a name="l00156"></a>00156 <span class="comment"> * over indices 1, 2, 3, and 4.</span>
<a name="l00157"></a>00157 <span class="comment"> * These macros require canonical integrals.  This requirement comes</span>
<a name="l00158"></a>00158 <span class="comment"> * from the need that integrals of the shells (1 2|2 1) are not</span>
<a name="l00159"></a>00159 <span class="comment"> * used.  The integrals (1 2|1 2) must be used with these macros to</span>
<a name="l00160"></a>00160 <span class="comment"> * get the right nonredundant integrals.</span>
<a name="l00161"></a>00161 <span class="comment"> */</span>
<a name="l00162"></a>00162 <span class="preprocessor">#define INT_MAX1(n1) ((n1)-1)</span>
<a name="l00163"></a>00163 <span class="preprocessor"></span><span class="preprocessor">#define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))</span>
<a name="l00164"></a>00164 <span class="preprocessor"></span><span class="preprocessor">#define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))</span>
<a name="l00165"></a>00165 <span class="preprocessor"></span><span class="preprocessor">#define INT_MAX4(e13e24,e34,i,j,k,n4) \</span>
<a name="l00166"></a>00166 <span class="preprocessor">  ((e34)?(((e13e24)&amp;&amp;((k)==(i)))?(j):(k)) \</span>
<a name="l00167"></a>00167 <span class="preprocessor">        :((e13e24)&amp;&amp;((k)==(i)))?(j):(n4)-1)</span>
<a name="l00168"></a>00168 <span class="preprocessor"></span><span class="comment">/* A note on integral symmetries:</span>
<a name="l00169"></a>00169 <span class="comment"> *  There are 15 ways of having equivalent indices.</span>
<a name="l00170"></a>00170 <span class="comment"> *  There are 8 of these which are important for determining the</span>
<a name="l00171"></a>00171 <span class="comment"> *  nonredundant integrals (that is there are only 8 ways of counting</span>
<a name="l00172"></a>00172 <span class="comment"> *  the number of nonredundant integrals in a shell quartet)</span>
<a name="l00173"></a>00173 <span class="comment"> * Integral type   Integral    Counting Type</span>
<a name="l00174"></a>00174 <span class="comment"> *     1           (1 2|3 4)      1</span>
<a name="l00175"></a>00175 <span class="comment"> *     2           (1 1|3 4)      2</span>
<a name="l00176"></a>00176 <span class="comment"> *     3           (1 2|1 4)       -&gt;1</span>
<a name="l00177"></a>00177 <span class="comment"> *     4           (1 2|3 1)       -&gt;1</span>
<a name="l00178"></a>00178 <span class="comment"> *     5           (1 1|1 4)      3</span>
<a name="l00179"></a>00179 <span class="comment"> *     6           (1 1|3 1)       -&gt;2</span>
<a name="l00180"></a>00180 <span class="comment"> *     7           (1 2|1 1)       -&gt;5</span>
<a name="l00181"></a>00181 <span class="comment"> *     8           (1 1|1 1)      4</span>
<a name="l00182"></a>00182 <span class="comment"> *     9           (1 2|2 4)       -&gt;1</span>
<a name="l00183"></a>00183 <span class="comment"> *    10           (1 2|3 2)       -&gt;1</span>
<a name="l00184"></a>00184 <span class="comment"> *    11           (1 2|3 3)      5</span>
<a name="l00185"></a>00185 <span class="comment"> *    12           (1 1|3 3)      6</span>
<a name="l00186"></a>00186 <span class="comment"> *    13           (1 2|1 2)      7</span>
<a name="l00187"></a>00187 <span class="comment"> *    14           (1 2|2 1)      8    reduces to 7 thru canonicalization</span>
<a name="l00188"></a>00188 <span class="comment"> *    15           (1 2|2 2)       -&gt;5</span>
<a name="l00189"></a>00189 <span class="comment"> */</span>
</pre></div></div>
<hr>
<address>
<small>

Generated at Wed Oct 14 14:12:10 2009 for <a
href="http://www.mpqc.org">MPQC</a>
2.3.1 using the documentation package <a
href="http://www.doxygen.org">Doxygen</a>
1.5.9.

</small>
</address>
</body>
</html>