Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 5e1854624d3bc613bdd0dd13d1ef9ac7 > files > 1189

gap-system-4.4.12-5mdv2010.0.i586.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
        "http://www.w3.org/TR/html4/loose.dtd">
<html>
<meta name="GENERATOR" content="TtH 3.55">
 <style type="text/css"> div.p { margin-top: 7pt;}</style>
 <style type="text/css"><!--
 td div.comp { margin-top: -0.6ex; margin-bottom: -1ex;}
 td div.comb { margin-top: -0.6ex; margin-bottom: -.6ex;}
 td div.hrcomp { line-height: 0.9; margin-top: -0.8ex; margin-bottom: -1ex;}
 td div.norm {line-height:normal;}
 span.roman {font-family: serif; font-style: normal; font-weight: normal;} 
 span.overacc2 {position: relative;  left: .8em; top: -1.2ex;}
 span.overacc1 {position: relative;  left: .6em; top: -1.2ex;} --></style>
 

         
<title> Multiplicity-Free Permutation Characters in GAP</title>
 
<h1 align="center">Multiplicity-Free Permutation Characters in GAP </h1>
  <body bgcolor="FFFFFF"> 

<div class="p"><!----></div>

<h3 align="center"> T<font size="-2">HOMAS</font> B<font size="-2">REUER</font> <br />
<i>Lehrstuhl D f&#252;r Mathematik</i> <br />
<i>RWTH, 52056 Aachen, Germany</i> </h3>

<div class="p"><!----></div>

<h3 align="center">October 6th, 2000 </h3>

<div class="p"><!----></div>


<div class="p"><!----></div>
This note shows a few examples of <font face="helvetica">GAP</font> computations concerning
multiplicity-free permutation characters,
with an emphasis on the classification of the faithful multiplicity-free
permutation characters of the sporadic simple groups and their automorphism
groups given in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].

<div class="p"><!----></div>
For examples on <font face="helvetica">GAP</font> computations with permutation characters in general,
see the note&nbsp;[<a href="#ctblpope" name="CITEctblpope">Bre</a>].

<div class="p"><!----></div>
For further questions about <font face="helvetica">GAP</font>, consult its

 <a href="link">Reference Manual</a>;
in particular, for the description of the commands for character tables,
see the chapter&nbsp;"Character Tables".

<div class="p"><!----></div>
Section&nbsp;<a href="#database">1</a> of this note shows how to interpret the individual
data available in the database.
In Section&nbsp;<a href="#explM23">2</a>, the main idea is to gather information from
the database as a whole, by filtering items with suitable properties.
Finally, Section&nbsp;<a href="#permcharinfo">3</a> gives an impression how <font face="helvetica">GAP</font>
can be used to obtain results such as the classification of described
in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].

<div class="p"><!----></div>



<div class="p"><!----></div>

<h1>Contents </h1><a href="#tth_sEc1"
>1&nbsp; The Database of Multiplicity-Free Characters</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc1.1"
>1.1&nbsp; The Faithful Multiplicity-Free Permutation Characters of M<sub>11</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc1.2"
>1.2&nbsp; The Faithful Multiplicity-Free Permutation Characters of M<sub>12</sub>.2</a><br />
<a href="#tth_sEc2"
>2&nbsp; Using the Database</a><br />
<a href="#tth_sEc3"
>3&nbsp; Using the Functions to Compute Multiplicity-Free Permutation Characters</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.1"
>3.1&nbsp; Using Tables of Marks</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.2"
>3.2&nbsp; Dealing with Possible Permutation Characters</a><br />


<div class="p"><!----></div>

<div class="p"><!----></div>

 <h2><a name="tth_sEc1">
1</a>&nbsp;&nbsp;The Database of Multiplicity-Free Characters</h2><a name="database">
</a>

<div class="p"><!----></div>
The database lists, for each group G that is either a sporadic simple
group or an automorphism group of a sporadic simple group,
a description of all conjugacy classes of subgroups H of G such that
the action of G on the right cosets of H is a faithful and
multiplicity-free permutation representation of G,
plus the permutation character of this representation.
The format how this information is stored is explained below,
subtleties such as possibly equal characters for different classes of
subgroups are discussed in Section&nbsp;<a href="#explM23">2</a>.

<div class="p"><!----></div>
(A <font face="helvetica">GAP</font> database providing more information about most of these
representations is in preparation;
this will cover, i.a., the character tables of the endomorphism rings of
these representations and the permutation representations themselves.)

<div class="p"><!----></div>
The data is stored in the file <tt>multfree.dat</tt>,
which is part of the Character Table Library&nbsp;[<a href="#CTblLib" name="CITECTblLib">Bre04</a>] of the <font face="helvetica">GAP</font>
system&nbsp;[<a href="#GAP4" name="CITEGAP4">GAP04</a>] as well as the file you are currently reading.
We load this <font face="helvetica">GAP</font> package and the data file into <font face="helvetica">GAP</font>&nbsp;4.
Afterwards the function <tt>MultFreePermChars</tt> is available.

<div class="p"><!----></div>

<pre>
    gap&#62; LoadPackage( "ctbllib" );
    true
    gap&#62; ReadPackage( "ctbllib", "tst/multfree.dat" );
    true

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc1.1">
1.1</a>&nbsp;&nbsp;The Faithful Multiplicity-Free Permutation Characters of
M<sub>11</sub></h3><a name="simple">
</a>

<div class="p"><!----></div>
We start with the inspection of the Mathieu group M<sub>11</sub>,
as an example of a <b>simple</b> group that is dealt with in the database.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "M11" );
    [ rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), rank := 2, 
          subgroup := "$A_6.2_3$", ATLAS := "1a+10a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), rank := 3, 
          subgroup := "$A_6 \\leq A_6.2_3$", ATLAS := "1a+10a+11a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), rank := 2, 
          subgroup := "$L_2(11)$", ATLAS := "1a+11a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ), rank := 6, 
          subgroup := "$11:5 \\leq L_2(11)$", ATLAS := "1a+11a+16ab+45a+55a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), rank := 3, 
          subgroup := "$3^2:Q_8.2$", ATLAS := "1a+10a+44a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), rank := 4, 
          subgroup := "$3^2:8 \\leq 3^2:Q_8.2$", ATLAS := "1a+10a+44a+55a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), rank := 4, 
          subgroup := "$A_5.2$", ATLAS := "1a+10a+11a+44a" ) ]
    gap&#62; List( info, x -&#62; x.rank );
    [ 2, 3, 2, 6, 3, 4, 4 ]
    gap&#62; chars:= List( info, x -&#62; x.character );;
    gap&#62; degrees:= List( chars, x -&#62; x[1] );
    [ 11, 22, 12, 144, 55, 110, 66 ]

</pre>

<div class="p"><!----></div>
We see that M<sub>11</sub> has seven multiplicity-free permutation characters,
of the ranks and degrees listed above.
(Note that for <b>multiplicity-free</b> permutation characters,
the rank is equal to the number of irreducible constituents.)
More precisely, there are exactly seven conjugacy classes of subgroups of
M<sub>11</sub> such that the permutation action on the cosets of these subgroups
is faithful and multiplicity-free.

<div class="p"><!----></div>
For displaying the characters compatibly with the character table of M<sub>11</sub>,
we can use the <tt>Display</tt> operation.
Note that the column and row ordering of character tables in <font face="helvetica">GAP</font>
is compatible with that of the tables in the  A<font size="-2">TLAS</font> of Finite Groups
([<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M11" );
    CharacterTable( "M11" )
    gap&#62; Display( tbl, rec( chars:= chars ) );
    M11
    
         2   4  4  1  3  .  1  3  3   .   .
         3   2  1  2  .  .  1  .  .   .   .
         5   1  .  .  .  1  .  .  .   .   .
        11   1  .  .  .  .  .  .  .   1   1
    
            1a 2a 3a 4a 5a 6a 8a 8b 11a 11b
        2P  1a 1a 3a 2a 5a 3a 4a 4a 11b 11a
        3P  1a 2a 1a 4a 5a 2a 8a 8b 11a 11b
        5P  1a 2a 3a 4a 1a 6a 8b 8a 11a 11b
       11P  1a 2a 3a 4a 5a 6a 8a 8b  1a  1a
    
    Y.1     11  3  2  3  1  .  1  1   .   .
    Y.2     22  6  4  2  2  .  .  .   .   .
    Y.3     12  4  3  .  2  1  .  .   1   1
    Y.4    144  .  .  .  4  .  .  .   1   1
    Y.5     55  7  1  3  .  1  1  1   .   .
    Y.6    110  6  2  2  .  .  2  2   .   .
    Y.7     66 10  3  2  1  1  .  .   .   .

</pre>

<div class="p"><!----></div>
The <tt>subgroup</tt> component of each record in <tt>info</tt> describes
the isomorphism type of a subgroup U of M<sub>11</sub> such that the value &#960;
of the <tt>character</tt> component is induced from the trivial character of U;
in other words, U is a point stabilizer of the permutation representation
of M<sub>11</sub> with character &#960;.

<div class="p"><!----></div>
(Contrary to this example, in general it may happen that different classes of
subgroups induce the same permutation character,
and that these subgroups may also be nonisomorphic;
see Section&nbsp;<a href="#explM23">2</a> for details.)

<div class="p"><!----></div>

<pre>
    gap&#62; subgroups:= List( info, x -&#62; x.subgroup );
    [ "$A_6.2_3$", "$A_6 \\leq A_6.2_3$", "$L_2(11)$", "$11:5 \\leq L_2(11)$", 
      "$3^2:Q_8.2$", "$3^2:8 \\leq 3^2:Q_8.2$", "$A_5.2$" ]

</pre>

<div class="p"><!----></div>
Each entry is a <span class="roman">L</span><sup><span class="roman">A</span></sup><span class="roman">T</span><sub><span class="roman">E</span></sub><span class="roman">X</span> format string that is either a name of the
point stabilizer or has the form <tt>&lt;U&gt; \leq &lt;M&gt;</tt> where <tt>&lt;M&gt;</tt> is the name
of a maximal subgroup containing the point stabilizer <tt>&lt;U&gt;</tt> as a proper
subgroup; in the former case, the point stabilizer is itself maximal.

<div class="p"><!----></div>
Note that a backslash occurring in a <tt>subgroup</tt> string is escaped by another
backslash;
but only a single backslash is printed when the string is printed via
the function <tt>Print</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; Print( subgroups[2], "\n" );
    $A_6 \leq A_6.2_3$

</pre>

<div class="p"><!----></div>
Finally, the <tt>ATLAS</tt> component of each record in <tt>info</tt> describes the
<tt>character</tt> value in terms of its irreducible constituents,
as is computed by the function <tt>PermCharInfo</tt>.
Examples can be found in Section&nbsp;<a href="#permcharinfo">3</a>;
for details about the output format,
see the documentation for this function in the <font face="helvetica">GAP</font> Reference Manual.

<div class="p"><!----></div>

     <h3><a name="tth_sEc1.2">
1.2</a>&nbsp;&nbsp;The Faithful Multiplicity-Free Permutation Characters of
M<sub>12</sub>.2</h3>

<div class="p"><!----></div>
The automorphism group of a sporadic simple group G is either equal to G
or an upward extension of G by an outer automorphism of order 2.
The <b>nonsimple</b> automorphism group M<sub>12</sub>.2 of the Mathieu group M<sub>12</sub>
serves as an example of the latter situation.

<div class="p"><!----></div>
In addition to the aspects mentioned in Section&nbsp;<a href="#simple">1.1</a>,
here we meet the situation that a permutation character either is induced
from a permutation character of M<sub>12</sub> or extends such a
(not necessarily multiplicity-free) permutation character.
The former case occurs exactly if the corresponding point stabilizer lies in
M<sub>12</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "M12.2" );;
    gap&#62; Length( info );
    13
    gap&#62; info[1];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 24, 0, 8, 6, 0, 4, 4, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      rank := 3, subgroup := "$M_{11}$", ATLAS := "1a^{\\pm}+11ab" )
    gap&#62; info[2];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 144, 0, 16, 9, 0, 0, 4, 0, 1, 0, 0, 1, 12, 4, 0, 0, 2, 2, 0, 1, 1 ] ), 
      rank := 4, subgroup := "$L_2(11).2$", ATLAS := "1a^++11ab+55a^++66a^+" )

</pre>

<div class="p"><!----></div>
The first character in the list <tt>info</tt> is induced from the trivial character
of a subgroup of type M<sub>11</sub> inside M<sub>12</sub>,
the second character is induced from the trivial character of a L<sub>2</sub>(11).2
subgroup whose intersection with M<sub>12</sub> is of type L<sub>2</sub>(11).

<div class="p"><!----></div>
We can distinguish the two kinds of permutation characters by explicitly
using the character tables;
for example, a permutation character is induced from a subgroup of a normal
subgroup if and only if it vanishes outside the classes forming this
subgroup.

<div class="p"><!----></div>

<pre>
    gap&#62; m12:= CharacterTable( "M12" );;
    gap&#62; m122:= UnderlyingCharacterTable( info[1].character );;
    gap&#62; fus:= GetFusionMap( m12, m122 );
    [ 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12 ]
    gap&#62; outer:= Difference( [ 1 .. NrConjugacyClasses( m122 ) ], fus );
    [ 13, 14, 15, 16, 17, 18, 19, 20, 21 ]
    gap&#62; info[1].character{ outer };
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
    gap&#62; info[2].character{ outer };
    [ 12, 4, 0, 0, 2, 2, 0, 1, 1 ]

</pre>

<div class="p"><!----></div>
A perhaps easier way is to look at the <tt>ATLAS</tt> components of the <tt>info</tt>
records.
Namely, the characters induced from subgroups of M<sub>12</sub> have both
linear characters of M<sub>12</sub>.2 as constituents,
which is expressed by the substring <tt>"1a^{\\pm}"</tt>.

<div class="p"><!----></div>
More generally, the <tt>ATLAS</tt> component lists the irreducible constituents
of the restriction to M<sub>12</sub>, where the two extensions of a character
to M<sub>12</sub>.2 are distinguished by a superscript +, &#8722;, or &#177;;
the latter means that both extensions occur.

<div class="p"><!----></div>
The <tt>ATLAS</tt> components describing the constituents relative to a subgroup
of index 2 can be computed using the <font face="helvetica">GAP</font> function
<tt>PermCharInfoRelative</tt>, see Section&nbsp;<a href="#permcharinfo">3</a>.

<div class="p"><!----></div>
It should be noted that the <tt>\leq</tt> substrings in the <tt>subgroup</tt> component
cannot be used to distinguish the two kinds of permutation characters,
since these substrings refer only to maximal subgroups <b>different from</b>
M<sub>12</sub>.
Examples are the first entry in <tt>info</tt> (see above), the fourth entry
(containing a character that is induced from a subgroup of type A<sub>6</sub>.2<sub>2</sub>
which lies in a A<sub>6</sub>.2<sup>2</sup> subgroup that is maximal in M<sub>11</sub>),
and the nineth entry (containing a character induced from a subgroup of
index 2 in a (2<sup>2</sup> &times;A<sub>5</sub>).2 subgroup that is maximal in M<sub>12</sub>.2.

<div class="p"><!----></div>

<pre>
    gap&#62; info[4];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 264, 24, 24, 12, 0, 4, 4, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      rank := 7, subgroup := "$A_6.2_2 \\leq A_6.2^2$", 
      ATLAS := "1a^{\\pm}+11ab+54a^{\\pm}+66a^{\\pm}" )
    gap&#62; info[9];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 792, 32, 24, 0, 6, 0, 2, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0 ] ), 
      rank := 11, subgroup := "$(2 \\times A_5).2 \\leq (2^2 \\times A_5).2$", 
      ATLAS := "1a^++16ab+45a^++54a^{\\pm}+55a^-+66a^{\\pm}+99a^-+144a^++176a^-" )

</pre>

<div class="p"><!----></div>

 <h2><a name="tth_sEc2">
2</a>&nbsp;&nbsp;Using the Database</h2><a name="explM23">
</a>

<div class="p"><!----></div>
In this section, we study the complete list of multiplicity-free
permutation characters of the sporadic simple groups and their
automorphism groups as a whole.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "all" );;
    gap&#62; Length( info );
    267
    gap&#62; Length( Set( info ) );
    262
    gap&#62; chars:= List( info, x -&#62; x.character );;
    gap&#62; Length( Set( chars ) );
    261

</pre>

<div class="p"><!----></div>
We see that there are exactly 267 conjugacy classes of subgroups
such that the permutation representation on the cosets is multiplicity-free.
Only 262 of the <tt>info</tt> records are different,
and there is exactly one case where two different <tt>info</tt> records belong to
the same permutation character.

<div class="p"><!----></div>
Let us look where these multiple entries arise.

<div class="p"><!----></div>

<pre>
    gap&#62; distrib:= List( info, x -&#62; Position( chars, x.character ) );;
    gap&#62; ambiguous:= Filtered( InverseMap( distrib ), IsList );
    [ [ 12, 15 ], [ 40, 41 ], [ 83, 84 ], [ 88, 90 ], [ 132, 133 ], [ 202, 203 ] ]
    gap&#62; except:= Filtered( ambiguous, x -&#62; info[ x[1] ] &lt;&#62; info[ x[2] ] );
    [ [ 83, 84 ] ]
    gap&#62; ambiguous:= Difference( ambiguous, except );;
    gap&#62; info{ except[1] };
    [ rec( ATLAS := "1a+22a+230a", 
          character := Character( CharacterTable( "M23" ), 
            [ 253, 29, 10, 5, 3, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] ), 
          group := "$M_{23}$", rank := 3, subgroup := "$L_3(4).2_2$" ), 
      rec( ATLAS := "1a+22a+230a", 
          character := Character( CharacterTable( "M23" ), 
            [ 253, 29, 10, 5, 3, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] ), 
          group := "$M_{23}$", rank := 3, subgroup := "$2^4:A_7$" ) ]

</pre>

<div class="p"><!----></div>
So the Mathieu group M<sub>23</sub> contains two classes of maximal subgroups,
of the structures L<sub>3</sub>(4).2<sub>2</sub> and 2<sup>4</sup>:A<sub>7</sub>, respectively,
such that the characters of the permutation representations on the
cosets of these subgroups are equal.

<div class="p"><!----></div>
Furthermore, it is a consequence of the classification in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>]
that in all cases except this one,
the isomorphism types of the point stabilizers are uniquely determined
by the permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; ambiginfo:= info{ List( ambiguous, x -&#62; x[1] ) };;
    gap&#62; for pair in ambiginfo do
    &#62;      Print( pair.group, ", ", pair.subgroup, ", ", pair.ATLAS, "\n" );
    &#62; od;
    $M_{12}$, $A_6.2_1 \leq A_6.2^2$, 1a+11ab+54a+55a
    $M_{22}$, $A_7$, 1a+21a+154a
    $HS$, $U_3(5).2$, 1a+175a
    $McL$, $M_{22}$, 1a+22a+252a+1750a
    $Fi_{22}$, $O_7(3)$, 1a+429a+13650a

</pre>

<div class="p"><!----></div>
In the other five cases of ambiguities, the whole <tt>info</tt> records are
equal, and from the above list we conclude that for each pair,
the point stabilizers are isomorphic.
In fact the subgroups are conjugate in the outer automorphism groups
of the simple groups involved.

<div class="p"><!----></div>
Next let us look at the distribution of ranks.

<div class="p"><!----></div>

<pre>
    gap&#62; Collected( List( info, x -&#62; x.rank ) );
    [ [ 2, 11 ], [ 3, 31 ], [ 4, 25 ], [ 5, 43 ], [ 6, 24 ], [ 7, 21 ], 
      [ 8, 26 ], [ 9, 16 ], [ 10, 17 ], [ 11, 9 ], [ 12, 9 ], [ 13, 8 ], 
      [ 14, 4 ], [ 15, 3 ], [ 16, 3 ], [ 17, 5 ], [ 18, 5 ], [ 19, 2 ], 
      [ 20, 2 ], [ 23, 1 ], [ 26, 1 ], [ 34, 1 ] ]
    gap&#62; max:= Filtered( info, x -&#62; x.rank = 34 );;
    gap&#62; max[1].group;  max[1].subgroup;  max[1].character[1]; 
    "$F_{3+}.2$"
    "$O_{10}^-(2) \\leq O_{10}^-(2).2$"
    100354720284

</pre>

<div class="p"><!----></div>
The maximal rank, 34, is attained for a degree 100&nbsp;354&nbsp;720&nbsp;284
character of F<sub>3+</sub>.2 = Fi<sub>24</sub>.

<div class="p"><!----></div>
For the nonsimple automorphism groups of sporadic simple groups,
the simple group G involved is of index 2,
and each permutation characters either is induced from a character of G
or extends a permutation character of G.

<div class="p"><!----></div>

<pre>
    gap&#62; nonsimple:= Filtered( info,
    &#62;        x -&#62; not IsSimple( UnderlyingCharacterTable( x.character ) ) );;
    gap&#62; Length( nonsimple );
    120
    gap&#62; ind:= Filtered( nonsimple, x -&#62; ScalarProduct( x.character,
    &#62;              Irr( UnderlyingCharacterTable( x.character ) )[2] ) = 1 );;
    gap&#62; Length( ind );
    48

</pre>

<div class="p"><!----></div>
There are exactly 120 multiplicity-free permutation characters of
nonsimple automorphism groups of sporadic simple groups,
and 48 of them are induced from characters of the simple groups.
(Note that the second irreducible character of the <font face="helvetica">GAP</font> character tables
in question is the unique nontrivial linear character.)

<div class="p"><!----></div>

<pre>
    gap&#62; ind[1];
    rec( ATLAS := "1a^{\\pm}+11ab", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 24, 0, 8, 6, 0, 4, 4, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      group := "$M_{12}.2$", rank := 3, subgroup := "$M_{11}$" )
    gap&#62; ForAll( ind, x -&#62; x.ATLAS{ [ 1 .. 8 ] } = "1a^{\\pm}" );
    true

</pre>

<div class="p"><!----></div>
Another possibility to select the induced characters is to check whether
the initial part of the <tt>ATLAS</tt> component is the string <tt>"1a^{\\pm}"</tt>.

<div class="p"><!----></div>

 <h2><a name="tth_sEc3">
3</a>&nbsp;&nbsp;Using the Functions to Compute Multiplicity-Free Permutation
Characters</h2><a name="permcharinfo">
</a>

<div class="p"><!----></div>
The functions <tt>MultFreeFromTOM</tt> and <tt>MultFree</tt> will be used later on.

<div class="p"><!----></div>
(The functions can also be found in the file <tt>multfree.g</tt>,
which can be downloaded from the same webpage where also this file can
be found.)

<div class="p"><!----></div>
For a character table <tt>tbl</tt> for which the table of marks is available in
the <font face="helvetica">GAP</font> library,
the function <tt>MultFreeFromTOM</tt> returns the list of all multiplicity-free
permutation characters of <tt>tbl</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "MultFreeFromTOM", function( tbl )
    &#62;     local tom,     # the table of marks
    &#62;           fus,     # fusion map from `t' to `tom'
    &#62;           perms;   # perm. characters of `t'
    &#62; 
    &#62;     if HasFusionToTom( tbl ) or HasUnderlyingGroup( tbl ) then
    &#62;       tom:= TableOfMarks( tbl );
    &#62;     else
    &#62;       Error( "no table of marks for character table &lt;tbl&#62; available" );
    &#62;     fi;
    &#62;     fus:= FusionCharTableTom( tbl, tom );
    &#62;     if fus = fail then
    &#62;       Error( "no unique fusion from &lt;tbl&#62; to the table of marks" );
    &#62;     fi;
    &#62;     perms:= PermCharsTom( tbl, tom );
    &#62;     return Filtered( perms,
    &#62;                x -&#62; ForAll( Irr( tbl ),
    &#62;                             y -&#62; ScalarProduct( tbl, x, y ) &lt;= 1 ) );
    &#62;     end );

</pre>

<div class="p"><!----></div>
<tt>TestPerm</tt> calls the <font face="helvetica">GAP</font> library functions <tt>TestPerm1</tt>, <tt>TestPerm2</tt>,
and <tt>TestPerm3</tt>; the return value is <tt>true</tt> if the argument <tt>pi</tt> is
a possible permutation character of the character table <tt>tbl</tt>,
and <tt>false</tt> otherwise.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "TestPerm", function( tbl, pi )
    &#62;     return     TestPerm1( tbl, pi ) = 0
    &#62;            and TestPerm2( tbl, pi ) = 0
    &#62;            and not IsEmpty( TestPerm3( tbl, [ pi ] ) );
    &#62;     end );

</pre>

<div class="p"><!----></div>
Let <tt>H</tt> be a character table, <tt>S</tt> be a list of characters of <tt>H</tt>,
<tt>psi</tt> a character of <tt>H</tt>, <tt>scprS</tt> a matrix, the i-th entry being the
coefficients of the decomposition of the induced character of <tt>S</tt>[i]
to a supergroup G, say, of <tt>H</tt>, <tt>scprpsi</tt> the decomposition of <tt>psi</tt>
induced to G, and <tt>k</tt> a positive integer.

<div class="p"><!----></div>
<tt>CharactersInducingWithBoundedMultiplicity</tt> returns the list
C( <tt>S</tt>, <tt>psi</tt>, <tt>k</tt> );
this is the list of all those characters <tt>psi</tt> + &#977; of
multiplicity at most <tt>k</tt> such that all constituents of &#977; are
contained in <tt>S</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; DeclareGlobalFunction( "CharactersInducingWithBoundedMultiplicity" );
    
    gap&#62; InstallGlobalFunction( CharactersInducingWithBoundedMultiplicity,
    &#62;     function( H, S, psi, scprS, scprpsi, k )
    &#62;     local result,       # the list $S( .. )$
    &#62;           chi,          # $\chi$
    &#62;           scprchi,      # decomposition of $\chi^G$
    &#62;           i,            # loop from `1' to `k'
    &#62;           allowed,      # indices of possible constituents
    &#62;           Sprime,       # $S^{\prime}_i$
    &#62;           scprSprime;   # decomposition of characters in $S^{\prime}_i$,
    &#62;                         # induced to $G$
    &#62; 
    &#62;     if IsEmpty( S ) then
    &#62; 
    &#62;       # Test whether `psi' is a possible permutation character.
    &#62;       if TestPerm( H, psi ) then
    &#62;         result:= [ psi ];
    &#62;       else
    &#62;         result:= [];
    &#62;       fi;
    &#62; 
    &#62;     else
    &#62; 
    &#62;       # Fix a character $\chi$.
    &#62;       chi     := S[1];
    &#62;       scprchi := scprS[1];
    &#62; 
    &#62;       # Form the union.
    &#62;       result:= CharactersInducingWithBoundedMultiplicity( H,
    &#62;                    S{ [ 2 .. Length( S ) ] }, psi,
    &#62;                    scprS{ [ 2 .. Length( S ) ] }, scprpsi, k );
    &#62;       for i in [ 1 .. k ] do
    &#62;         allowed    := Filtered( [ 2 .. Length( S ) ],
    &#62;                           j -&#62; Maximum( i * scprchi + scprS[j] ) &lt;= k );
    &#62;         Sprime     := S{ allowed };
    &#62;         scprSprime := scprS{ allowed };
    &#62; 
    &#62;         Append( result, CharactersInducingWithBoundedMultiplicity( H,
    &#62;                             Sprime, psi + i * chi,
    &#62;                             scprSprime, scprpsi + i * scprchi, k ) );
    &#62;       od;
    &#62; 
    &#62;     fi;
    &#62; 
    &#62;     return result;
    &#62;     end );

</pre>

<div class="p"><!----></div>
Let <tt>G</tt> and <tt>H</tt> be character tables of groups G and H, respectively,
such that H is a subgroup of G and the class fusion from <tt>H</tt> to <tt>G</tt>
is stored on <tt>H</tt>.
<tt>MultAtMost</tt> returns the list of all characters &#981;<sup>G</sup> of G
of multiplicity at most <tt>k</tt> such that &#981; is a possible permutation
character of H.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "MultAtMost", function( G, H, k )
    &#62;     local triv,     # $1_H$
    &#62;           permch,   # $(1_H)^G$
    &#62;           scpr1H,   # decomposition of $(1_H)^G$
    &#62;           rat,      # rational irreducible characters of $H$
    &#62;           ind,      # induced rational irreducible characters
    &#62;           mat,      # decomposition of `ind'
    &#62;           allowed,  # indices of possible constituents
    &#62;           S0,       # $S_0$
    &#62;           scprS0,   # decomposition of characters in $S_0$,
    &#62;                     # induced to $G$, with $Irr(G)$
    &#62;           cand;     # list of multiplicity-free candidates, result
    &#62; 
    &#62;     # Compute $(1_H)^G$ and its decomposition into irreducibles of $G$.
    &#62;     triv   := TrivialCharacter( H );
    &#62;     permch := Induced( H, G, [ triv ] );
    &#62;     scpr1H := MatScalarProducts( G, Irr( G ), permch )[1];
    &#62; 
    &#62;     # If $(1_H)^G$ has multiplicity larger than `k' then we are done.
    &#62;     if Maximum( scpr1H ) &#62; k then
    &#62;       return [];
    &#62;     fi;
    &#62; 
    &#62;     # Compute the set $S_0$ of all possible nontrivial
    &#62;     # rational constituents of a candidate of multiplicity at most `k',
    &#62;     # that is, all those rational irreducible characters of
    &#62;     # $H$ that induce to $G$ with multiplicity at most `k'.
    &#62;     rat:= RationalizedMat( Irr( H ) );
    &#62;     ind:= Induced( H, G, rat );
    &#62;     mat:= MatScalarProducts( G, Irr( G ), ind );
    &#62;     allowed:= Filtered( [ 1.. Length( mat ) ],
    &#62;                         x -&#62; Maximum( mat[x] + scpr1H ) &lt;= k );
    &#62;     S0     := rat{ allowed };
    &#62;     scprS0 := mat{ allowed };
    &#62; 
    &#62;     # Compute $C( S_0, 1_H, k )$.
    &#62;     cand:= CharactersInducingWithBoundedMultiplicity( H,
    &#62;                S0, triv, scprS0, scpr1H, k );
    &#62; 
    &#62;     # Induce the candidates to $G$, and return the sorted list.
    &#62;     cand:= Induced( H, G, cand );
    &#62;     Sort( cand );
    &#62;     return cand;
    &#62;     end );

</pre>

<div class="p"><!----></div>
<tt>MultFree</tt> returns <tt>MultAtMost( G, H, 1 )</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "MultFree", function( G, H )
    &#62;     return MultAtMost( G, H, 1 );
    &#62;     end );

</pre>

<div class="p"><!----></div>
Let <tt>tbl</tt> be a character table with known <tt>Maxes</tt> value,
and <tt>k</tt> a positive integer.
The function <tt>PossiblePermutationCharactersWithBoundedMultiplicity</tt>
returns a record with the following components.

<ul>
<br />identifier
    the <tt>Identifier</tt> value of <tt>tbl</tt>,
<br />maxnames
    the list of names of the maximal subgroups of <tt>tbl</tt>,
<br />permcand
    at the i-th position the list of those possible permutation
    characters of <tt>tbl</tt> whose multiplicity is at most <tt>k</tt>
    and which are induced from the i-th maximal subgroup of <tt>tbl</tt>,
    and
<br />k
    the given bound <tt>k</tt> for the multiplicity.</ul>

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "PossiblePermutationCharactersWithBoundedMultiplicity",
    &#62;     function( tbl, k )
    &#62;     local permcand, # list of all mult. free perm. character candidates
    &#62;           maxname,  # loop over tables of maximal subgroups
    &#62;           max;      # one table of a maximal subgroup
    &#62; 
    &#62;     if not HasMaxes( tbl ) then
    &#62;       return fail;
    &#62;     fi;
    &#62; 
    &#62;     permcand:= [];
    &#62; 
    &#62;     # Loop over the tables of maximal subgroups.
    &#62;     for maxname in Maxes( tbl ) do
    &#62; 
    &#62;       max:= CharacterTable( maxname );
    &#62;       if max = fail or GetFusionMap( max, tbl ) = fail then
    &#62; 
    &#62;         Print( "#E  no fusion `", maxname, "' -&#62; `", Identifier( tbl ),
    &#62;                "' stored\n" );
    &#62;         Add( permcand, Unknown() );
    &#62; 
    &#62;       else
    &#62; 
    &#62;         # Compute the possible perm. characters inducing through `max'.
    &#62;         Add( permcand, MultAtMost( tbl, max, k ) );
    &#62; 
    &#62;       fi;
    &#62;     od;
    &#62; 
    &#62;     # Return the result record.
    &#62;     return rec( identifier := Identifier( tbl ),
    &#62;                 maxnames   := Maxes( tbl ),
    &#62;                 permcand   := permcand,
    &#62;                 k          := k );
    &#62;     end );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.1">
3.1</a>&nbsp;&nbsp;Using Tables of Marks</h3>

<div class="p"><!----></div>
As a small example for the computation of multiplicity-free permutation
characters from the table of marks of a group, we consider the alternating
group A<sub>5</sub>.
Its character table as well as its table of marks are accessible from the
respective <font face="helvetica">GAP</font> library, via the identifier <tt>A5</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "A5" );;
    gap&#62; chars:= MultFreeFromTOM( tbl );
    [ Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ), 
      Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ), 
      Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ), 
      Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ), 
      Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]

</pre>

<div class="p"><!----></div>
As the <font face="helvetica">GAP</font> databases do not provide information about the isomorphism
types of arbitrary subgroups, there is no way to compute automatically the
<tt>subgroup</tt> strings as contained in the database of multiplicity-free
permutation characters (cf.&nbsp;Section&nbsp;<a href="#database">1</a>).
Of course it is easy to see that the above characters of A<sub>5</sub> are induced
from the trivial characters of the cyclic group of order 5,
the dihedral groups of orders 6 and 10, the alternating group A<sub>4</sub>,
and the group A<sub>5</sub> itself, respectively.

<div class="p"><!----></div>
The <tt>ATLAS</tt> information used in the database records can be computed
using the <font face="helvetica">GAP</font> function <tt>PermCharInfo</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; PermCharInfo( tbl, chars ).ATLAS;
    [ "1a+3ab+5a", "1a+4a+5a", "1a+5a", "1a+4a", "1a" ]

</pre>

<div class="p"><!----></div>
As an example for a nonsimple group, we repeat the computation of
all multiplicity-free permutation characters of M<sub>12</sub>.2,
using the <font face="helvetica">GAP</font> table of marks.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M12.2" );;
    gap&#62; chars:= MultFreeFromTOM( tbl );;
    gap&#62; lib:= MultFreePermChars( "M12.2" );;
    gap&#62; Length( lib );  Length( chars );
    13
    15
    gap&#62; Difference( chars, List( lib, x -&#62; x.character ) );
    [ Character( CharacterTable( "M12.2" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
          1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), Character( CharacterTable( "M12.2" ), 
        [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]

</pre>

<div class="p"><!----></div>
This confirms the classification for M<sub>12</sub>.2, since the additional
characters found from the table of marks are not faithful.

<div class="p"><!----></div>
The corresponding <tt>ATLAS</tt> information is computed using the <font face="helvetica">GAP</font> function
<tt>PermCharInfoRelative</tt>, since the constituents shall be listed relative to
the simple group M<sub>12</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; tblsimple:= CharacterTable( "M12" );;
    gap&#62; PermCharInfoRelative( tblsimple, tbl, chars ).ATLAS;
    [ "1a^++16ab+45a^-+54a^{\\pm}+55a^{\\pm}bc+66a^++99a^{\\pm}+144a^++176a^+", 
      "1a^++11ab+45a^-+54a^{\\pm}+55a^++66a^{\\pm}+99a^-+120a^{\\pm}+144a^{\\pm}",
      "1a^{\\pm}+11ab+45a^{\\pm}+54a^{\\pm}+55a^{\\pm}bc+99a^{\\pm}+120a^{\\pm}", 
      "1a^++16ab+45a^++54a^{\\pm}+55a^-+66a^{\\pm}+99a^-+144a^++176a^-", 
      "1a^++16ab+45a^-+54a^{\\pm}+66a^++99a^-+144a^+", 
      "1a^++11ab+54a^{\\pm}+55a^++66a^++99a^-+144a^+", 
      "1a^{\\pm}+11ab+54a^{\\pm}+55a^{\\pm}+99a^{\\pm}", 
      "1a^++16ab+45a^++54a^{\\pm}+66a^++144a^+", 
      "1a^{\\pm}+11ab+54a^{\\pm}+66a^{\\pm}", "1a^++16ab+45a^++66a^+", 
      "1a^++11ab+55a^++66a^+", "1a^{\\pm}+11ab+54a^{\\pm}", "1a^{\\pm}+11ab", 
      "1a^{\\pm}", "1a^+" ]

</pre>

<div class="p"><!----></div>
For more information about tables of marks, see&nbsp;[<a href="#Pfe97" name="CITEPfe97">Pfe97</a>].

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.2">
3.2</a>&nbsp;&nbsp;Dealing with Possible Permutation Characters</h3>

<div class="p"><!----></div>
In this section, we deal with <b>possible permutation characters</b>,
that is, characters that have certain properties of permutation
characters but for which no subgroups need to exist from whose trivial
characters they are induced.
For more information about such characters, see the section
"Possible Permutation Characters" in the <font face="helvetica">GAP</font> Reference Manual,
the paper&nbsp;[<a href="#BP98copy" name="CITEBP98copy">BP98</a>], and the note&nbsp;[<a href="#ctblpope" name="CITEctblpope">Bre</a>].

<div class="p"><!----></div>
We can compute possible permutation characters from the character table
of the group in question, the table of marks need not be available.
The problem is of course that for classifying the permutation characters,
we have to decide which of the candidates are in fact permutation
characters.

<div class="p"><!----></div>
Here we show only two small examples that could also be handled via
tables of marks.
(The <font face="helvetica">GAP</font> code shown uses only standard functions lists, such as
<tt>List</tt>, <tt>Filtered</tt>, and <tt>ForAll</tt>, and functions for character tables,
such as <tt>Irr</tt> and <tt>ScalarProduct</tt>;
if you are not familiar with these functions, consult the corresponding
sections in the <font face="helvetica">GAP</font> Reference Manual.)

<div class="p"><!----></div>
The first example is the Mathieu group M<sub>11</sub> that has been inspected
already in Section&nbsp;<a href="#simple">1.1</a>.
This group is small enough for the computation of all possible permutation
characters, and then filtering out the multiplicity-free ones.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M11" );;
    gap&#62; perms:= PermChars( tbl );;
    gap&#62; multfree:= Filtered( perms,
    &#62;        x -&#62; ForAll( Irr( tbl ), chi -&#62; ScalarProduct( chi, x ) &lt;= 1 ) );
    [ Character( CharacterTable( "M11" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), 
      Character( CharacterTable( "M11" ), [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), 
      Character( CharacterTable( "M11" ), [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ) ]
    gap&#62; Length( multfree );
    8

</pre>

<div class="p"><!----></div>
Comparing this list with the seven faithful multiplicity-free permutation
characters of M<sub>11</sub> shown in Section&nbsp;<a href="#simple">1.1</a>,
we see that all candidates are in fact permutation characters.
Without this information, we have to show, for each candidate,
the existence of a subgroup that serves as the point stabilizer.

<div class="p"><!----></div>
Additionally, if we are interested in the subgroup information contained in
the database (cf.&nbsp;the <tt>subgroup</tt> components of the <tt>info</tt> records in
Section&nbsp;<a href="#database">1</a>), we want to relate the point stabilizers to the
maximal subgroups of M<sub>11</sub>.

<div class="p"><!----></div>
In the case of the sporadic simple groups and their automorphism groups,
we can use the fact that for many of these groups,
the character tables of all maximal subgroups and the class fusions of these
tables are known.
Since each multiplicity-free permutation character of a group is either
trivial or induced from a multiplicity-free permutation character of a
maximal subgroup, we can thus reduce our problem to the computation of
multiplicity-free possible permutation characters of all maximal subgroups.
(That this really is a reduction can be read in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].)
This approach is implemented in the function <tt>MultFree</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M11" );
    CharacterTable( "M11" )
    gap&#62; maxes:= Maxes( tbl );
    [ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
    gap&#62; name:= maxes[1];;
    gap&#62; MultFree( tbl, CharacterTable( name ) );
    [ Character( CharacterTable( "M11" ), [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ]

</pre>

<div class="p"><!----></div>
The function <tt>MultFree</tt> computes all multiplicity-free characters of
the given character table that are induced from possible permutation
characters of the given character table of a subgroup.
(Note that these characters need not necessarily be faithful.)
If we loop over all classes of maximal subgroups then we get all
candidates for M<sub>11</sub>,
together with the information in which maximal subgroup the hypothetical
point stabilizer lies.

<div class="p"><!----></div>

<pre>
    gap&#62; cand:= [];;
    gap&#62; for name in maxes do
    &#62;      max:= CharacterTable( name );
    &#62;      Append( cand, List( MultFree( tbl, max ),
    &#62;                     chi -&#62; [ name, Size( tbl ) / Size( max ), chi ] ) );
    &#62; od;
    gap&#62; cand;
    [ [ "A6.2_3", 11, Character( CharacterTable( "M11" ), 
            [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ) ], 
      [ "A6.2_3", 11, Character( CharacterTable( "M11" ), 
            [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ) ], 
      [ "A6.2_3", 11, Character( CharacterTable( "M11" ), 
            [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ], 
      [ "L2(11)", 12, Character( CharacterTable( "M11" ), 
            [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ) ], 
      [ "L2(11)", 12, Character( CharacterTable( "M11" ), 
            [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ) ], 
      [ "3^2:Q8.2", 55, Character( CharacterTable( "M11" ), 
            [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ) ], 
      [ "3^2:Q8.2", 55, Character( CharacterTable( "M11" ), 
            [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ], 
      [ "A5.2", 66, Character( CharacterTable( "M11" ), 
            [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ) ] ]
    gap&#62; Length( cand );  Length( Set( cand, x -&#62; x[3] ) );
    8
    7

</pre>

<div class="p"><!----></div>
We immediately see that the candidates of degrees 11, 12, 55, and 66
are permutation characters,
since they are obtained by inducing the trivial characters of the
maximal subgroups.
The permutation characters of degrees 22 and 144 can be established
in two steps.
First we note that the group A<sub>6</sub>.2<sub>3</sub> contains the subgroup A<sub>6</sub> of index
2,
and the group L<sub>2</sub>(11) contains a class of subgroups of index 12,
of isomorphism type 11:5.
Second the possible permutation characters of degrees 2 and 12
of these maximal subgroups of M<sub>11</sub> are uniquely determined,
and inducing these characters to M<sub>11</sub> yields in fact multiplicity-free
characters.

<div class="p"><!----></div>

<pre>
    gap&#62; max1:= CharacterTable( maxes[1] );;
    gap&#62; perms1:= PermChars( max1, [ 2 ] );
    [ Character( CharacterTable( "A6.2_3" ), [ 2, 2, 2, 2, 2, 0, 0, 0 ] ) ]
    gap&#62; perms1[1]^tbl = cand[2][3];
    true
    gap&#62; max2:= CharacterTable( maxes[2] );;
    gap&#62; perms2:= PermChars( max2, [ 12 ] );
    [ Character( CharacterTable( "L2(11)" ), [ 12, 0, 0, 2, 2, 0, 1, 1 ] ) ]
    gap&#62; perms2[1]^tbl = cand[5][3];
    true

</pre>

<div class="p"><!----></div>
The last candidate to deal with is the degree 110 character,
which might be induced from a subgroup of A<sub>6</sub>.2<sub>3</sub> or 3<sup>2</sup>:Q<sub>8</sub>.2
or both.
Let us first look at the possible permutation characters of degree 10
of A<sub>6</sub>.2<sub>3</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; PermChars( max1, [ 10 ] );
    [ Character( CharacterTable( "A6.2_3" ), [ 10, 2, 1, 2, 0, 0, 2, 2 ] ), 
      Character( CharacterTable( "A6.2_3" ), [ 10, 2, 1, 2, 0, 2, 0, 0 ] ) ]
    gap&#62; OrdersClassRepresentatives( max1 );
    [ 1, 2, 3, 4, 5, 4, 8, 8 ]

</pre>

<div class="p"><!----></div>
There are two possibilities, and only the first induces the candidate of
degree 110.
The latter follows from the fact that the nonzero character value of the
candidate on classes of element order 8 means that the
hypothetical point stabilizer contains elements of order 8,
cf.&nbsp;the <tt>Display</tt> call in Section&nbsp;<a href="#simple">1.1</a>.

<div class="p"><!----></div>
The group A<sub>6</sub>.2<sub>3</sub> has a unique class of subgroups of index 10,
which are the Sylow 3 normalizers, of type 3<sup>2</sup>:Q<sub>8</sub>.
Since Q<sub>8</sub> has no elements of order 8,
the first candidate is <b>not</b> a permutation character.

<div class="p"><!----></div>
The remaining subgroup from which the degree 110 character can be induced
is 3<sup>2</sup>:Q<sub>8</sub>.2;
this group has three index 2 subgroups, and the candidate is in fact
induced from the trivial character of one of these subgroups.

<div class="p"><!----></div>

<pre>
    gap&#62; max3:= CharacterTable( maxes[3] );;
    gap&#62; classes:= SizesConjugacyClasses( max3 );;
    gap&#62; Filtered( ClassPositionsOfNormalSubgroups( max3 ),
    &#62;              x -&#62; Sum( classes{ x } ) = Size( max3 ) / 2 );
    [ [ 1, 2, 4, 5, 6 ], [ 1, 2, 3, 4, 5, 7 ], [ 1, 2, 4, 5, 8, 9 ] ]
    gap&#62; perms3:= PermChars( max3, [ 2 ] );
    [ Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 0, 2, 2, 0, 0, 2, 2 ] ), 
      Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 0, 2, 2, 2, 0, 0, 0 ] ), 
      Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 2, 2, 2, 0, 2, 0, 0 ] ) ]
    gap&#62; induced:= List( perms3, x -&#62; x^tbl );
    [ Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 14, 2, 2, 0, 2, 0, 0, 0, 0 ] ) ]
    gap&#62; Position( induced, cand[3][3] );
    1

</pre>

<div class="p"><!----></div>
Putting these considerations together, we thus get a confirmation of the
classification for M<sub>11</sub>.

<div class="p"><!----></div>
As a second example, we look at the group M<sub>12</sub>.2.
The database contains 13 characters,
and the approach using <tt>MultFree</tt> yields 17 different characters.
We are interested in disproving the candidates that are not
permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "M12.2" );;
    gap&#62; perms:= Set( List( info, x -&#62; x.character ) );;
    gap&#62; Length( info );  Length( perms );
    13
    13
    gap&#62; tbl:= CharacterTable( "M12.2" );;
    gap&#62; maxes:= Maxes( tbl );
    [ "M12", "L2(11).2", "M12.2M3", "(2^2xA5):2", "D8.(S4x2)", "4^2:D12.2", 
      "3^(1+2):D8", "S4xS3", "A5.2" ]
    gap&#62; cand:= [];;
    gap&#62; for name in maxes do
    &#62;      max:= CharacterTable( name );
    &#62;      Append( cand, List( MultFree( tbl, max ),
    &#62;                     chi -&#62; [ name, Size( tbl ) / Size( max ), chi ] ) );
    &#62; od;
    gap&#62; Length( cand );  Length( Set( List( cand, x -&#62; x[3] ) ) );
    25
    17
    gap&#62; toexclude:= Set( Filtered( cand, x -&#62; not x[3] in perms ) );
    [ [ "M12", 2, Character( CharacterTable( "M12.2" ), 
            [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ], 
      [ "M12", 2, Character( CharacterTable( "M12.2" ), 
            [ 440, 0, 24, 8, 8, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
             ] ) ], 
      [ "M12", 2, Character( CharacterTable( "M12.2" ), [ 1320, 0, 8, 6, 0, 8, 0, 
              0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ], 
      [ "M12", 2, Character( CharacterTable( "M12.2" ), 
            [ 1320, 0, 24, 6, 0, 4, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
             ] ) ] ]

</pre>

<div class="p"><!----></div>
Clearly the degree 2 character is a permutation character,
but as it is not faithful, it is not contained in the database.

<div class="p"><!----></div>
The other three characters are all induced from candidates of the maximal
subgroup M<sub>12</sub>,
and we may use the same approach for M<sub>12</sub> in order to find out whether
they can be permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; m12:= CharacterTable( "M12" );;
    gap&#62; subcand:= [];;
    gap&#62; submaxes:= Maxes( m12 );
    [ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", "2xS5", 
      "M8.S4", "4^2:D12", "A4xS3" ]
    gap&#62; for name in submaxes do
    &#62;      max:= CharacterTable( name );
    &#62;      Append( subcand, MultFree( m12, max ) );
    &#62; od;
    gap&#62; induced:= List( subcand, x -&#62; x^tbl );;
    gap&#62; Intersection( induced, List( toexclude, x -&#62; x[3] ) );
    [  ]

</pre>

<div class="p"><!----></div>
Thus none of the candidates in the list <tt>toexclude</tt> is a permutation
character.

<div class="p"><!----></div>

<div class="p"><!----></div>

<div class="p"><!----></div>


<h2>References</h2>

<dl compact="compact">
 <dt><a href="#CITEBL96" name="BL96">[BL96]</a></dt><dd>
Thomas Breuer and Klaus Lux, <em>The multiplicity-free permutation characters
  of the sporadic simple groups and their automorphism groups</em>, Comm. Alg.
  <b>24</b> (1996), no.&nbsp;7, 2293-2316.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEBP98copy" name="BP98copy">[BP98]</a></dt><dd>
Thomas Breuer and G&#246;tz Pfeiffer, <em>Finding Possible
  Permutation Characters</em>, J. Symbolic Comput. <b>26</b> (1998),
  343-354.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEctblpope" name="ctblpope">[Bre]</a></dt><dd>
Thomas Breuer, <em>Permutation Characters in <font face="helvetica">GAP</font></em>, <br />
  <a href="http://www.math.rwth-aachen.de/LDFM/homes/Thomas.Breuer/ctbllib/doc/ctblpope.htm"><tt>http://www.math.rwth-aachen.de/LDFM/homes/Thomas.Breuer/ctbllib/doc/ctblpope.htm</tt></a>.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITECTblLib" name="CTblLib">[Bre04]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> Character Table Library, Version
  1.1</em>, Lehrstuhl D f&#252;r Mathematik, Rheinisch
  Westf&#228;lische Technische Hochschule, Aachen, Germany,
  2004.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITECCN85" name="CCN85">[CCN<sup>+</sup>85]</a></dt><dd>
J[ohn]&nbsp;H. Conway, R[obert]&nbsp;T. Curtis, S[imon]&nbsp;P. Norton, R[ichard]&nbsp;A. Parker,
  and R[obert]&nbsp;A. Wilson, <em>Atlas of finite groups</em>, Oxford University
  Press, 1985.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEGAP4" name="GAP4">[GAP04]</a></dt><dd>
The GAP&nbsp;Group, <em>GAP - Groups, Algorithms, and Programming, Version
  4.4</em>, 2004, <a href="http://www.gap-system.org"><tt>http://www.gap-system.org</tt></a>.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEPfe97" name="Pfe97">[Pfe97]</a></dt><dd>
G.&nbsp;Pfeiffer, <em>The Subgroups of M<sub>24</sub>, or How to Compute the
  Table of Marks of a Finite Group</em>, Experiment. Math. <b>6</b>
  (1997), no.&nbsp;3, 247-270.</dd>
</dl>


<div class="p"><!----></div>

<div class="p"><!----></div>

<br /><br /><hr /><small>File translated from
T<sub><font size="-1">E</font></sub>X
by <a href="http://hutchinson.belmont.ma.us/tth/">
T<sub><font size="-1">T</font></sub>H</a>,
version 3.55.<br />On 31 Mar 2004, 10:54.</small>
</html>