Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 5e1854624d3bc613bdd0dd13d1ef9ac7 > files > 2088

gap-system-4.4.12-5mdv2010.0.i586.rpm

<!-- ------------------------------------------------------------------- -->
<!--                                                                     -->
<!--  dcrws.xml             KAN documentation             Chris Wensley  -->
<!--                                                    & Anne Heyworth  -->
<!--                                                                     -->
<!--  $Id: dcrws.xml,v 0.97 2008/11/18 gap Exp $                         -->
<!--                                                                     -->
<!-- ------------------------------------------------------------------- -->

<?xml version="1.0" encoding="ISO-8859-15"?>
  <!-- <M>Id: intro.xml,v 0.97  Exp <M> -->

<Chapter Label="chap-dcrws">
<Heading>Double Coset Rewriting Systems</Heading>

The &kan; package provides functions for the computation of normal forms
for double coset representatives of finitely presented groups.
The first version of the package was released to support the
paper <Cite Key="BrGhHeWe" />, which describes the algorithms 
used in this package.

<Section><Heading>Rewriting Systems</Heading>

<ManSection>
   <Oper Name="KnuthBendixRewritingSystem"
         Arg="grp, gensorder, ordering, alph" />
   <Oper Name="ReducedConfluentRewritingSystem"
         Arg="grp, gensorder, ordering, limit" />
   <Oper Name="DisplayRwsRules"
         Arg="rws" />
<Description>
Methods for <C>KnuthBendixRewritingSystem</C> and 
<C>ReducedConfluentRewritingSystem</C> 
are supplied which apply to a finitely presented group. 
These start by calling <C>IsomorphismFpMonoid</C> and then work with
the resulting monoid.
The parameter <C>gensorder</C> will normally be 
<C>"shortlex"</C> or <C>"wreath"</C>, 
while <C>ordering</C> is an integer list for reordering the generators, 
and <C>alph</C> is an alphabet string used when printing words.
A <E>partial</E> rewriting system may be obtained  by giving a <C>limit</C> 
to the number of rules calculated. 
As usual, <M>A,B</M> denote the inverses of <M>a,b</M>. 
<P/>
In the example the generators are by default ordered <M>[A,a,B,b]</M>, 
so the list <C>L1</C> is used to specify the order <C>[a,A,b,B]</C> 
to be used with the shortlex ordering.
Specifying a limit <C>0</C> means that no limit is prescribed.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> G1 := FreeGroup( 2 );;
gap> L1 := [2,1,4,3];;
gap> order := "shortlex";;
gap> alph1 := "AaBb";;
gap> rws1 := ReducedConfluentRewritingSystem( G1, L1, order, 0, alph1 );
Rewriting System for Monoid( [ f1^-1, f1, f2^-1, f2 ], ... ) with rules
[ [ f1^-1*f1, <identity ...> ], [ f1*f1^-1, <identity ...> ],
  [ f2^-1*f2, <identity ...> ], [ f2*f2^-1, <identity ...> ] ]
gap> DisplayRwsRules( rws1 );;
[ [ Aa, id ], [ aA, id ], [ Bb, id ], [ bB, id ] ]
]]>
</Example>
</Section>


<Section><Heading>Example 1 -- free product of two cyclic groups</Heading>

<Index>example -- free product</Index>
<ManSection>
   <Func Name="DoubleCosetRewritingSystem"
         Arg="grp, genH, genK, rws" />
   <Prop Name="IsDoubleCosetRewritingSystem"
         Arg="dcrws" />
<Description>
A <E>double coset rewriting system</E> for the double cosets 
<M>H \backslash G / K</M> 
requires as data a finitely presented group <M>G =</M><C>grp</C>, 
generators <C>genH, genK</C> for subgroups <M>H, K</M>, 
and a rewriting system <C>rws</C> for <M>G</M>.
<P/>
A simple example is given by taking <M>G</M> to be the free group on two
generators <M>a,b</M>, a cyclic subgroup <M>H</M> with generator <M>a^6</M>,
and a second cyclic subgroup <M>K</M> with generator <M>a^4</M>.
(Similar examples using different powers of <M>a</M> are easily constructed.)
Since <C>gcd(6,4)=2</C>, we have <M>Ha^2K=HK</M>, so the double cosets have
representatives <M>[HK, HaK, Ha^iba^jK, Ha^ibwba^jK]</M>
where <M>i \in [0..5]</M>, <M>j \in [0..3]</M>, 
and <M>w</M> is any word in <M>a,b</M>.
<P/>
In the example the free group <M>G</M> is converted to a four generator
monoid with relations defining the inverse of each generator,
<C>[[Aa,id],[aA,id],[Bb,id],[bB,id]]</C>, 
where <C>id</C> is the empty word.
The initial rules for the double coset rewriting system 
comprise those of <M>G</M> plus those given by 
the generators of <M>H,K</M>, which are <M>[[Ha^6,H],[a^4K,K]]</M>.
In the complete rewrite system new rules involving <M>H</M> or <M>K</M> 
may arise, and there may also be rules involving both <M>H</M> and <M>K</M>. 
<P/>
For this example,
<List>
<Item>
there are two <M>H</M>-rules, <M>[[Ha^4,HA^2],[HA^3,Ha^3]]</M>,
</Item>
<Item>
there are two <M>K</M>-rules, <M>[[a^3K,AK],[A^2K,a^2K]]</M>,
</Item>
<Item>
and there are two <M>H</M>-<M>K</M>-rules, <M>[[Ha^2K,HK],[HAK,HaK]]</M>.
</Item>
</List>
Here is how the computation may be performed.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> genG1 := GeneratorsOfGroup( G1 );;
gap> genH1 := [ genG1[1]^6 ];;
gap> genK1 := [ genG1[1]^4 ];;
gap> dcrws1 := DoubleCosetRewritingSystem( G1, genH1, genK1, rws1 );;
gap> IsDoubleCosetRewritingSystem( dcrws1 );
true
gap> DisplayRwsRules( dcrws1 );;
G-rules:
[ [ Aa, id ], [ aA, id ], [ Bb, id ], [ bB, id ] ]
H-rules:
[ [ Haaaa, HAA ],
  [ HAAA, Haaa ] ]
K-rules:
[ [ aaaK, AK ],
  [ AAK, aaK ] ]
H-K-rules:
[ [ HaaK, HK ],
  [ HAK, HaK ] ]
]]>
</Example>

<ManSection>
   <Attr Name="WordAcceptorOfReducedRws"
         Arg="rws" />
   <Attr Name="WordAcceptorOfDoubleCosetRws"
         Arg="rws" />
   <Prop Name="IsWordAcceptorOfDoubleCosetRws"
         Arg="aut" />
<Description>
Using functions from the <Package>automata</Package> package, we may 
<List>
<Item>
compute a <E>word acceptor</E> for the rewriting system of <M>G</M>;
</Item>
<Item>
compute a <E>word acceptor</E> for the double coset rewriting system;
</Item>
<Item>
test a list of words to see whether they are recognised by the automaton;
</Item>
<Item>
obtain a rational expression for the language of the automaton. 
</Item>
</List>
</Description>
</ManSection>
<P/>
<Example>
<![CDATA[
gap> waG1 := WordAcceptorOfReducedRws( rws1 );
Automaton("nondet",6,"aAbB",[ [ [ 1 ], [ 4 ], [ 1 ], [ 4 ], [ 4 ], [ 4 ] ], [ \
[ 1 ], [ 3 ], [ 3 ], [ 1 ], [ 3 ], [ 3 ] ], [ [ 1 ], [ 6 ], [ 6 ], [ 6 ], [ 1 \
], [ 6 ] ], [ [ 1 ], [ 5 ], [ 5 ], [ 5 ], [ 5 ], [ 1 ] ] ],[ 2 ],[ 1 ]);;
gap> wadc1 := WordAcceptorOfDoubleCosetRws( dcrws1 );
< deterministic automaton on 6 letters with 15 states >
gap> Print( wadc1 );
Automaton("det",15,"HKaAbB",[ [ 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ],\
 [ 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2 ], [ 2, 2, 13, 2, 10, 5, 2, 13,\
 2, 7, 11, 11, 12, 2, 2 ], [ 2, 2, 9, 2, 2, 14, 2, 9, 15, 2, 2, 2, 2, 7, 15 ],\
 [ 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 ], [ 2, 2, 3, 2, 3, 3, 3, 2, 3,\
 3, 3, 3, 3, 3, 3 ] ],[ 4 ],[ 1 ]);;
gap> words1 := [ "HK","HaK","HbK","HAK","HaaK","HbbK","HabK","HbaK","HbaabK"];;
gap> valid1 := List( words1, w -> IsRecognizedByAutomaton( wadc1, w ) );
[ true, true, true, false, false, true, true, true, true ]
gap> lang1 := FAtoRatExp( wadc1 );
((H(aaaUAA)BUH(a(aBUB)UABUB))(a(a(aa*BUB)UB)UA(AA*BUB)UB)*(a(a(aa*bUb)Ub)UA(AA\
*bUb))UH(aaaUAA)bUH(a(abUb)UAbUb))((a(a(aa*BUB)UB)UA(AA*BUB))(a(a(aa*BUB)UB)UA\
(AA*BUB)UB)*(a(a(aa*bUb)Ub)UA(AA*bUb))Ua(a(aa*bUb)Ub)UA(AA*bUb)Ub)*((a(a(aa*BU\
B)UB)UA(AA*BUB))(a(a(aa*BUB)UB)UA(AA*BUB)UB)*(a(aKUK)UAKUK)Ua(aKUK)UAKUK)U(H(a\
aaUAA)BUH(a(aBUB)UABUB))(a(a(aa*BUB)UB)UA(AA*BUB)UB)*(a(aKUK)UAKUK)UH(aKUK)
]]>
</Example>
</Section>


<Section><Heading>Example 2 -- the trefoil group</Heading>

<Index>example -- trefoil group</Index>
<Index>trefoil group</Index>
<ManSection>
   <Oper Name="PartialDoubleCosetRewritingSystem"
         Arg="grp, Hgens, Kgens, rws, limit" />
   <Attr Name="WordAcceptorOfPartialDoubleCosetRws"
         Arg="grp, prws" />
<Description>
It may happen that, even when <M>G</M> has a finite rewriting system, 
the double coset rewriting system is infinite.
This is the case with the trefoil group <M>T</M> with generators 
<M>[x,y]</M> and relator <M>[x^3 = y^2]</M> if the wreath product ordering 
is used with <M>X > x > Y > y</M>. 
The group itself has a rewriting system with just 6 rules. 
</Description>
</ManSection>
<Example>
<![CDATA[
gap> FT := FreeGroup( 2 );;
gap> relsT := [ FT.1^3*FT.2^-2 ];;
gap> T := FT/relsT;;
gap> genT := GeneratorsOfGroup( T );;
gap> x := genT[1];  y := genT[2];
gap> alphT := "XxYy";;
gap> ordT := [4,3,2,1];;
gap> orderT := "wreath";;
gap> rwsT := ReducedConfluentRewritingSystem( T, ordT, orderT, 0, alphT );
gap> DisplayRwsRules( rwsT );;
[ [ Yy, id ], [ yY, id ], [ X, xxYY ], [ xxx, yy ], [ yyx, xyy ], [ Yx, yxYY ]\
 ]
gap> accT := WordAcceptorOfReducedRws( rwsT );
< deterministic automaton on 4 letters with 7 states >
gap> Print( accT );
Automaton("nondet",7,"yYxX",[ [ [ 1 ], [ 4 ], [ 1 ], [ 4, 7 ], [ 4 ], [ 4 ], [\
 4, 7 ] ], [ [ 1 ], [ 3 ], [ 3 ], [ 1 ], [ 3 ], [ 3 ], [ 1 ] ], [ [ 1 ], [ 5 ]\
, [ 1 ], [ 5 ], [ 5, 6 ], [ 1 ], [ 1 ] ], [ [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ],\
 [ 1 ], [ 1 ] ] ],[ 2 ],[ 1 ]);;
gap> langT := FAtoRatExp( accT );
(xx*(xyUy)Uy)(xx*(xyUy)Uyy*yUy)*(xx*((xYUY)Y*(yUxUX)Ux(xUX)UX)(yUYUxUX)*U(yy*(\
YUxUX)UYUX)(yUYUxUX)*)Uxx*((xYUY)Y*(yUxUX)Ux(xUX)UX)(yUYUxUX)*U(YY*(yUxUX)UX)(\
yUYUxUX)*(yxUx)((xyUy)x)*
gap> r := RationalExpression( "((xyUy)y*UxY*UY*)Uyy*UY*" ); 
(xyUy)y*UxY*UY*Uyy*UY*
gap> AreEqualLang( langT, r );
The given languages are not over the same alphabet
false
]]>
</Example>
In a previous version the expression <C>r</C>, 
which does not involve the letter <C>X</C>, 
was returned as the language <C>langT</C>. 
This discrepancy should be investigated. 
<P/>

Taking subgroups <M>H</M>, <M>K</M> to be generated by 
<M>x</M> and <M>y</M> respectively, 
the double coset rewriting system has an infinite number of <M>H</M>-rules.
It turns out that only a finite number of these are needed to produce
the required automaton.
The function <C>PartialDoubleCosetRewritingSystem</C> allows a limit to be 
specified on the number of rules to be computed. 
In the listing below a limit of 20 is used, but in fact 10 is sufficient.
<Example>
<![CDATA[
gap> prwsT := PartialDoubleCosetRewritingSystem( T, [x], [y], rwsT, 20 );;
#I WARNING: reached supplied limit 20 on number of rules
gap> DisplayRwsRules( prwsT );
G-rules:
[ [ X, xxYY ], [ Yx, yxYY ], [ Yy, id ], [ yY, id ], [ xxx, yy ], [ yyx, xyy ]\
 ]
H-rules:
[ [ Hx, H ],
  [ HY, Hy ],
  [ Hyy, H ],
  [ Hyxyy, Hyx ],
  [ HyxY, Hyxy ],
  [ Hyxyxyy, Hyxyx ],
  [ Hyxxyy, Hyxx ],
  [ HyxxY, Hyxxy ],
  [ HyxyxY, Hyxyxy ],
  [ Hyxyxyxyy, Hyxyxyx ],
  [ Hyxyxxyy, Hyxyxx ],
  [ Hyxxyxyy, Hyxxyx ],
  [ HyxxyxYY, Hyxxyx ] ]
K-rules:
[ [ YK, K ],
  [ yK, K ] ]
]]>
</Example>

This list of partial rules is then used by a modified 
word acceptor function.
<Example>
<![CDATA[
gap> paccT := WordAcceptorOfPartialDoubleCosetRws( T, prwsT );;
< deterministic automaton on 6 letters with 6 states >
gap> Print( paccT, "\n" );
Automaton("det",6,"HKyYxX",[ [ 2, 2, 2, 6, 2, 2 ], [ 2, 2, 1, 2, 2, 1 ], [ 2, \
2, 5, 2, 2, 5 ], [ 2, 2, 2, 2, 2, 2 ], [ 2, 2, 6, 2, 3, 2 ], [ 2, 2, 2, 2, 2, \
2 ] ],[ 4 ],[ 1 ]);;
gap> plangT := FAtoRatExp( paccT );
H(yx(yx)*x)*(yx(yx)*KUK)
gap> wordsT := ["HK", "HxK", "HyK", "HYK", "HyxK", "HyxxK", "HyyH", "HyxYK"];;
gap> validT := List( wordsT, w -> IsRecognizedByAutomaton( paccT, w ) );
[ true, false, false, false, true, true, false, false ]
]]>
</Example>
</Section>



<Section><Heading>Example 3 -- an infinite rewriting system</Heading>

<Index>example -- infinite rws</Index>
<ManSection>
   <Attr Name="KBMagRewritingSystem"
         Arg="fpgrp" />
   <Attr Name="KBMagWordAcceptor"
         Arg="fpgrp" />
   <Oper Name="KBMagFSAtoAutomataDFA"
         Arg="fsa, alph" />
   <Oper Name="WordAcceptorByKBMag"
         Arg="grp, alph" />
   <Oper Name="WordAcceptorByKBMagOfDoubleCosetRws"
         Arg="grp, dcrws" />
<Description>
When the group <M>G</M> has an infinite rewriting system, 
the double coset rewriting system will also be infinite.
In this case we try the function <C>KBMagWordAcceptor</C> 
which calls the package <Package>KBMAG</Package> 
to compute a word acceptor for <M>G</M>,
and <C>KBMagFSAtoAutomataDFA</C> to convert this to a deterministic automaton 
as used by the <Package>automata</Package> package.
The resulting <C>dfa</C> forms part of the double coset automaton, 
together with sufficient <M>H</M>-rules, <M>K</M>-rules 
and <M>H</M>-<M>K</M>-rules found by the function 
<C>PartialDoubleCosetRewritingSystem</C>.
(Note that these five attributes and operations will not be available 
if the <Package>kbmag</Package> package has not been loaded.)
<P/>
In the following example we take a two generator group <M>G3</M> 
with relators <M>[a^3,b^3,(a*b)^3]</M>, 
the normal forms of whose elements are some of the strings with 
<M>a</M> or <M>a^{-1}</M> alternating with <M>b</M> or <M>b^{-1}</M>.
The automatic structure computed by <Package>KBMAG</Package> 
has a word acceptor with 17 states.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> F3 := FreeGroup("a","b");;
gap> rels3 := [ F3.1^3, F3.2^3, (F3.1*F3.2)^3 ];;
gap> G3 := F3/rels3;;
gap> alph3 := "AaBb";;
gap> waG3 := WordAcceptorByKBMag( G3, alph3 );;
gap> Print( waG3, "\n");
Automaton("det",18,"aAbB",[ [ 2, 18, 18, 8, 10, 12, 13, 18, 18, 18, 18, 18, 18\
, 8, 17, 12, 18, 18 ], [ 3, 18, 18, 9, 11, 9, 12, 18, 18, 18, 18, 18, 18, 11, \
18, 11, 18, 18 ], [ 4, 6, 6, 18, 18, 18, 18, 18, 6, 12, 16, 18, 12, 18, 18, 18\
, 12, 18 ], [ 5, 5, 7, 18, 18, 18, 18, 14, 15, 5, 18, 18, 7, 18, 18, 18, 15, 1\
8 ] ],[ 1 ],[ 1 .. 17 ]);;
gap> langG3 := FAtoRatExp( waG3 );
((abUAb)AUbA)(bA)*(b(aU@)UB(aB)*(a(bU@)U@)U@)U(abUAb)(aU@)U((aBUB)(aB)*AUba(Ba\
)*BA)(bA)*(b(aU@)U@)U(aBUB)(aB)*(a(bU@)U@)Uba(Ba)*(BU@)UbUaUA(B(aB)*(a(bU@)UAU\
@)U@)U@
]]>
</Example>

<ManSection>
   <Oper Name="DCrules"
         Arg="dcrws" />
   <Attr Name="Hrules"
         Arg="dcrws" />
   <Attr Name="Krules"
         Arg="dcrws" />
   <Attr Name="HKrules"
         Arg="dcrws" />
<Description>
We now take <M>H</M> to be generated by <M>ab</M> and <M>K</M> 
to be generated by <M>ba</M>.  
If we specify a limits of 50, 75, 100, 200 
for the number of rules in a partial double coset rewrite system, 
we obtain lists of  <M>H</M>-rules, <M>K</M>-rules 
and <M>H</M>-<M>K</M>-rules of increasing length.
The numbers of states in the resulting automata also increase. 
We may deduce by hand (but not computationally -- see <Cite Key="BrGhHeWe" />) 
three infinite sets of rules and a limit for the automata.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> lim := 100;;
gap> genG3 := GeneratorsOfGroup( G3 );;
gap> a := genG3[1];;  b := genG3[2];; 
gap> gH3 := [ a*b ];;  gK3 := [ b*a ];;
gap> rwsG3 := KnuthBendixRewritingSystem( G3, "shortlex", [2,1,4,3], alph3 );;
gap> dcrws3 := PartialDoubleCosetRewritingSystem( G3, gH3, gK3, rwsG3, lim );;
#I using PartialDoubleCosetRewritingSystem with limit 100
#I  51 rules, and 1039 pairs
#I WARNING: reached supplied limit 100 on number of rules
gap> Print( Length( Rules( dcrws3 ) ), " rules found.\n" );
101 rules found.
gap> dcaut3 := WordAcceptorByKBMagOfDoubleCosetRws( G3, dcrws3 );;
gap> Print( "Double Coset Minimalized automaton:\n", dcaut3 );
Double Coset Minimalized automaton:
Automaton("det",40,"HKaAbB",[ [ 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\
, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ], [ \
2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, \
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1 ], [ 2, 2, 2, 2, 3, 22, 2, 2, 2, 2, 2\
, 2, 2, 2, 2, 2, 2, 2, 39, 2, 39, 2, 25, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\
, 2, 2, 2, 2 ], [ 2, 2, 2, 2, 40, 3, 27, 2, 8, 2, 10, 2, 12, 2, 14, 2, 16, 2, \
18, 2, 20, 2, 2, 2, 2, 24, 2, 27, 2, 29, 2, 31, 2, 33, 2, 35, 2, 37, 2, 2 ], [\
 2, 2, 2, 2, 19, 2, 2, 26, 2, 9, 2, 11, 2, 13, 2, 15, 2, 17, 2, 38, 2, 3, 2, 2\
6, 3, 2, 7, 2, 28, 2, 30, 2, 32, 2, 34, 2, 36, 2, 2, 26 ], [ 2, 2, 2, 2, 2, 2,\
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 2, 23, 23, 2, 2, 2, 2, 2, 2, \
2, 2, 2, 2, 2, 2, 2, 21, 6 ] ],[ 4 ],[ 1 ]);;
gap> dclang3 := FAtoRatExp( dcaut3 );;
gap> Print( "Double Coset language of acceptor:\n", dclang3, "\n" );
Double Coset language of acceptor:
(HbAbAbAbAbAbAbUHAb)(Ab)*(A(Ba(Ba)*bKUK)UK)UHbAbA(bA(bA(bA(bAKUK)UK)UK)UK)UH(A\
(B(aB)*(abUA)KUK)UaKUb(a(Ba)*BA(bA(bA(bA(bA(bA(bA(bA)*(bKUK)UK)UK)UK)UK)UK)UK)\
UAK)UK)
gap> ok := DCrules(dcrws3);;
gap> alph3e := dcrws3!.alphabet;;
gap> Print("H-rules:\n");  DisplayAsString( Hrules(dcrws3), alph3e, true );
H-rules:
[ HB, Ha ]
[ HaB, Hb ]
[ Hab, H ]
[ HbAB, HAba ]
[ HbAbAB, HAbAba ]
[ HbAbAbAB, HAbAbAba ]
[ HbAbAbAbAB, HAbAbAbAba ]
[ HbAbAbAbAbAB, HAbAbAbAbAba ]
[ HbAbAbAbAbAbAB, HAbAbAbAbAbAba ]
gap> Print("K-rules:\n");  DisplayAsString( Krules(dcrws3), alph3e, true );
K-rules:
[ BK, aK ]
[ BaK, bK ]
[ baK, K ]
[ BAbK, abAK ]
[ BAbAbK, abAbAK ]
[ BAbAbAbK, abAbAbAK ]
[ BAbAbAbAbK, abAbAbAbAK ]
[ BAbAbAbAbAbK, abAbAbAbAbAK ]
[ BAbAbAbAbAbAbK, abAbAbAbAbAbAK ]
gap> Print("HK-rules:\n");  DisplayAsString( HKrules(dcrws3), alph3e, true );
HK-rules:
[ HbK, HAK ]
[ HbAbK, HAbAK ]
[ HbAbAbK, HAbAbAK ]
[ HbAbAbAbK, HAbAbAbAK ]
[ HbAbAbAbAbK, HAbAbAbAbAK ]
[ HbAbAbAbAbAbK, HAbAbAbAbAbAK ]
]]>
</Example>

<ManSection>
   <Oper Name="NextWord"
         Arg="dcrws, word" />
   <Oper Name="WordToString"
         Arg="word, alph" />
   <Oper Name="DisplayAsString"
         Arg="word, alph" />
   <Oper Name="IdentityDoubleCoset"
         Arg="dcrws" />
<Description>
These functions may be used to find normal forms of increasing length 
for double coset representatives.
</Description>
</ManSection>
<Example>
<![CDATA[
gap> len := 30;;
gap> L3 := 0*[1..len];;
gap> L3[1] := IdentityDoubleCoset( dcrws3 );;
gap> for i in [2..len] do
gap>     L3[i] := NextWord( dcrws3, L3[i-1] );
gap> od;
gap> ## List of 30 normal forms for double cosets:
gap> DisplayAsString( L3, alph3e, true );
[ HK, HAK, HaK, HAbK, HbAK, HABAK, HAbAK, HABabK, HAbAbK, HbAbAK, HbaBAK, HABa\
BAK, HAbAbAK, HABaBabK, HAbABabK, HAbAbAbK, HbAbAbAK, HbaBAbAK, HbaBaBAK, HABa\
BaBAK, HAbAbAbAK, HABaBaBabK, HAbABaBabK, HAbAbABabK, HAbAbAbAbK, HbAbAbAbAK, \
HbaBAbAbAK, HbaBaBAbAK, HbaBaBaBAK, HABaBaBaBAK ]
gap> w := NextWord( dcrws3, L3[30] );
m1*m3*m6*m3*m6*m3*m6*m3*m6*m3*m2
gap> s := WordToString( w, alph3e );
"HAbAbAbAbAK"
]]>
</Example>
</Section>
</Chapter>