Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 5e1854624d3bc613bdd0dd13d1ef9ac7 > files > 2869

gap-system-4.4.12-5mdv2010.0.i586.rpm

<!-- #################################################################### -->
<!-- ##                                                                ## -->
<!-- ##  rcwagrp.xml         RCWA documentation           Stefan Kohl  ## -->
<!-- ##                                                                ## -->
<!-- ##  $Id: rcwagrp.xml,v 1.155 2007/09/26 14:16:45 stefan Exp $     ## -->
<!-- ##                                                                ## -->
<!-- #################################################################### -->

<Chapter Label="ch:RcwaGroups">
<Heading>Residue-Class-Wise Affine Groups</Heading>

<Ignore Remark="set screen width to 75, for the example tester">
<Example>
<![CDATA[
gap> SizeScreen([75,24]);;
]]>
</Example>
</Ignore>

In this chapter, we describe how to construct residue-class-wise affine
groups and how to compute with them.

<!-- #################################################################### -->

<Section Label="sec:ContructingRcwaGroups">
<Heading>Constructing residue-class-wise affine groups</Heading>

<Index Key="Group"><C>Group</C></Index>
<Index Key="GroupByGenerators"><C>GroupByGenerators</C></Index>
<Index Key="GroupWithGenerators"><C>GroupWithGenerators</C></Index>

As any other groups in &GAP;, residue-class-wise affine groups
can be constructed by <C>Group</C>, <C>GroupByGenerators</C> or
<C>GroupWithGenerators</C>.

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));
<rcwa group over Z with 2 generators>
gap> IsTame(G); Size(G); IsSolvable(G); IsPerfect(G);
true
infinity
false
false
]]>
</Example>

<Index Key="View" Subkey="for an rcwa group"><C>View</C></Index>
<Index Key="Display" Subkey="for an rcwa group"><C>Display</C></Index>
<Index Key="Print" Subkey="for an rcwa group"><C>Print</C></Index>
<Index Key="String" Subkey="for an rcwa group"><C>String</C></Index>

There are methods for the operations <C>View</C>, <C>Display</C>,
<C>Print</C> and <C>String</C> which are applicable to rcwa groups.
All rcwa groups over a ring <M>R</M> are subgroups of RCWA(<M>R</M>).
The group RCWA(<M>R</M>) itself is not finitely generated, thus cannot
be constructed as described above. It is handled as a special case:

<ManSection>
  <Func Name="RCWA"
        Arg="R" Label="the group of all rcwa permutations of a ring"/>
  <Returns>
    The group RCWA(<A>R</A>) of all residue-class-wise affine
    permutations of the ring&nbsp;<A>R</A>.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> RCWA_Z := RCWA(Integers);
RCWA(Z)
gap> IsSubgroup(RCWA_Z,G);
true
]]>
</Example>
  </Description>
</ManSection>

Examples of rcwa permutations can be obtained via
<C>Random(RCWA(<A>R</A>))</C>, see Section&nbsp;<Ref Label="sec:Random"/>.
<P/>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

We denote the group which is generated by all
class transpositions of the ring&nbsp;<M>R</M> by CT(<M>R</M>).
This group is handled as a special case as well:

<ManSection>
  <Func Name="CT" Arg="R"
        Label="the group generated by all class transpositions of a ring"/>
  <Returns>
    The group CT(<A>R</A>) which is generated by all
    class transpositions of the ring&nbsp;<M>R</M>.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> CT_Z := CT(Integers);
CT(Z)
gap> IsSimple(CT_Z); # One of a longer list of stored attributes/properties.
true
gap> IsSubgroup(CT_Z,G);
false
]]>
</Example>
  </Description>
</ManSection>

Another way of constructing an rcwa group is taking the image of an
rcwa representation:

<ManSection>
  <Attr Name="IsomorphismRcwaGroup"
        Arg="G, R" Label="for a group, over a given ring"/>
  <Attr Name="IsomorphismRcwaGroup"
        Arg="G" Label="for a group"/>
  <Returns>
    A monomorphism from the group <A>G</A> to&nbsp;RCWA(<A>R</A>)
    or to&nbsp;RCWA(<M>\mathbb{Z}</M>), respectively.
  </Returns>
  <Description>
    The best-supported case is <A>R</A> = <M>\mathbb{Z}</M>.
    Currently there are methods available for finite groups, for
    free products of finite groups and for free groups. The method for
    free products of finite groups uses the Table-Tennis Lemma
    (cf. e.g. Section&nbsp;II.B. in&nbsp;<Cite Key="LaHarpe00"/>), and the
    method for free groups uses an adaptation of the construction given
    on page&nbsp;27 in&nbsp;<Cite Key="LaHarpe00"/> from
    PSL(2,<M>\mathbb{C}</M>) to RCWA(<M>\mathbb{Z}</M>). <P/>
<Example>
<![CDATA[
gap> F := FreeProduct(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3)),
>                     SymmetricGroup(3));
<fp group on the generators [ f1, f2, f3, f4, f5 ]>
gap> IsomorphismRcwaGroup(F);
[ f1, f2, f3, f4, f5 ] ->
[ <bijective rcwa mapping of Z with modulus 12>,
  <bijective rcwa mapping of Z with modulus 24>,
  <bijective rcwa mapping of Z with modulus 12>,
  <bijective rcwa mapping of Z with modulus 72>,
  <bijective rcwa mapping of Z with modulus 36> ]
gap> IsomorphismRcwaGroup(FreeGroup(2));
[ f1, f2 ] -> [ <wild bijective rcwa mapping of Z with modulus 8>,
  <wild bijective rcwa mapping of Z with modulus 8> ]
gap> F2 := Image(last);
<wild rcwa group over Z with 2 generators>
]]>
</Example>
  </Description>
</ManSection>

The class of groups which can faithfully be represented as rcwa groups
over the integers is closed under taking direct products, under taking
wreath products with finite groups and under taking wreath products with
the infinite cyclic group <M>(\mathbb{Z},+)</M>. Therefore these
operations can be used to build rcwa groups as well:

<ManSection>
  <Meth Name="DirectProduct"
        Arg="G1, G2, ..." Label="for rcwa groups over Z"/>
  <Returns>
    An rcwa group isomorphic to the direct product of the rcwa groups
    over&nbsp;<M>\mathbb{Z}</M> given as arguments.
  </Returns>
  <Description>
    There is certainly no unique or canonical way to embed a direct
    product of rcwa groups into RCWA(<M>\mathbb{Z}</M>). 
    This method chooses to embed the groups <A>G1</A>, <A>G2</A>,
    <A>G3</A>&nbsp;... via restrictions by <M>n \mapsto mn</M>,
    <M>n \mapsto mn+1</M>, <M>n \mapsto mn+2</M>&nbsp;...
    (<M>\rightarrow</M>&nbsp;<Ref Oper="Restriction"
    Label="of an rcwa group, by an injective rcwa mapping"/>),
    where <M>m</M> denotes the number of groups given as arguments.
<Example>
<![CDATA[
gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> F2xF2 := DirectProduct(F2,F2);
<wild rcwa group over Z with 4 generators>
gap> Image(Projection(F2xF2,1)) = F2;
true
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Heading>
    WreathProduct
    (for an rcwa group over Z, with a permutation group
    or (<M>\mathbb{Z}</M>,+))
  </Heading>
  <Meth Name="WreathProduct" Arg="G, P"
        Label="for an rcwa group over Z and a permutation group"/>
  <Meth Name="WreathProduct" Arg="G, Z"
        Label="for an rcwa group over Z and the infinite cyclic group"/>
  <Returns>
    An rcwa group isomorphic to the wreath product of the rcwa
    group&nbsp;<A>G</A> over&nbsp;<M>\mathbb{Z}</M> with the finite
    permutation group&nbsp;<A>P</A> or with the infinite cyclic
    group&nbsp;<A>Z</A>, respectively.
  </Returns>
  <Description>
    The first-mentioned method embeds the <C>DegreeAction(<A>P</A>)</C>th
    direct power of&nbsp;<A>G</A> using the method for <C>DirectProduct</C>,
    and lets the permutation group&nbsp;<A>P</A> act naturally on the set of
    residue classes modulo <C>DegreeAction(<A>P</A>)</C>.
    The second-mentioned method restricts
    (<M>\rightarrow</M>&nbsp;<Ref Oper="Restriction"
    Label="of an rcwa group, by an injective rcwa mapping"/>)
    the group&nbsp;<A>G</A> to the residue class&nbsp;3(4), and maps the
    generator of the infinite cyclic group&nbsp;<A>Z</A>
    to <C>ClassTransposition(0,2,1,2) * ClassTransposition(0,2,1,4)</C>.
<Example>
<![CDATA[
gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> F2wrA5 := WreathProduct(F2,AlternatingGroup(5));;
gap> Embedding(F2wrA5,1);
[ <wild bijective rcwa mapping of Z with modulus 8>,
  <wild bijective rcwa mapping of Z with modulus 8> ] ->
[ <wild bijective rcwa mapping of Z with modulus 40>,
  <wild bijective rcwa mapping of Z with modulus 40> ]
gap> Embedding(F2wrA5,2);
[ (1,2,3,4,5), (3,4,5) ] ->
[ <bijective rcwa mapping of Z with modulus 5, of order 5>,
  <bijective rcwa mapping of Z with modulus 5, of order 3> ]
gap> ZwrZ := WreathProduct(Group(ClassShift(0,1)),Group(ClassShift(0,1)));
<wild rcwa group over Z with 2 generators>
gap> Embedding(ZwrZ,1);
[ ClassShift(0,1) ] ->
[ <tame bijective rcwa mapping of Z with modulus 4, of order infinity> ]
gap> Embedding(ZwrZ,2);
[ ClassShift(0,1) ] ->
[ <wild bijective rcwa mapping of Z with modulus 4> ]
]]>
</Example>
  </Description>
</ManSection>

Many of the above group constructions are based on certain monomorphisms
from the group RCWA(<M>R</M>) into itself. The support of the image of such
a monomorphism is the image of a given injective rcwa mapping. For this
reason, these monomorphisms are called <E>restriction monomorphisms</E>.
The following operation computes images of rcwa mappings and -groups
under them:

<ManSection>
  <Heading>
    Restriction (of an rcwa mapping or -group, by an injective rcwa mapping)
  </Heading>
  <Oper Name="Restriction"
        Arg="g, f" Label="of an rcwa mapping, by an injective rcwa mapping"/>
  <Oper Name="Restriction"
        Arg="G, f" Label="of an rcwa group, by an injective rcwa mapping"/>
  <Returns>
    The restriction of the rcwa mapping <A>g</A> (respectively the
    rcwa group <A>G</A>) by the injective rcwa mapping&nbsp;<A>f</A>.
  </Returns>
  <Description>
    By definition, the <E>restriction</E> <M>g_f</M> of an rcwa mapping
    <A>g</A> by an injective rcwa mapping&nbsp;<A>f</A> is the unique rcwa
    mapping which satisfies the equation <M>f \cdot g_f = g \cdot f</M>
    and which fixes the complement of the image of <A>f</A> pointwise.
    If <A>f</A> is bijective, the restriction of <A>g</A> by <A>f</A>
    is just the conjugate of <A>g</A> under&nbsp;<A>f</A>. <P/>

    The <E>restriction</E> of an rcwa group&nbsp;<A>G</A> by an injective
    rcwa mapping&nbsp;<A>f</A> is defined as the group whose elements are
    the restrictions of the elements of&nbsp;<A>G</A> by&nbsp;<A>f</A>.
    The restriction of&nbsp;<A>G</A> by&nbsp;<A>f</A> acts on the
    image of&nbsp;<A>f</A> and fixes its complement pointwise.
<Example>
<![CDATA[
gap> F2tilde := Restriction(F2,RcwaMapping([[5,3,1]]));
<wild rcwa group over Z with 2 generators>
gap> Support(F2tilde);
3(5)
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Heading>
    Induction (of an rcwa mapping or -group, by an injective rcwa mapping)
  </Heading>
  <Oper Name ="Induction"
        Arg="g, f" Label="of an rcwa mapping, by an injective rcwa mapping"/>
  <Oper Name ="Induction"
        Arg="G, f" Label="of an rcwa group, by an injective rcwa mapping"/>
  <Returns>
    The induction of the rcwa mapping <A>g</A> (respectively the rcwa
    group <A>G</A>) by the injective rcwa mapping&nbsp;<A>f</A>.
  </Returns>
  <Description>
    <E>Induction</E> is the right inverse of restriction, i.e. it is
    <C>Induction(Restriction(<A>g</A>,<A>f</A>),<A>f</A>) = <A>g</A></C> and
    <C>Induction(Restriction(<A>G</A>,<A>f</A>),<A>f</A>) = <A>G</A></C>.
    The mapping&nbsp;<A>g</A> respectively the group&nbsp;<A>G</A> must not
    move points outside the image of&nbsp;<A>f</A>.
<Example>
<![CDATA[
gap> Induction(F2tilde,RcwaMapping([[5,3,1]])) = F2;
true
]]>
</Example>
  </Description>
</ManSection>

<Index Key="rcwa group" Subkey="modulus">rcwa group</Index>
<Index Key="rcwa group" Subkey="multiplier">rcwa group</Index>
<Index Key="rcwa group" Subkey="divisor">rcwa group</Index>
<Index Key="rcwa group" Subkey="prime set">rcwa group</Index>
<Index Key="rcwa group" Subkey="integral">rcwa group</Index>
<Index Key="rcwa group" Subkey="class-wise order-preserving">
  rcwa group
</Index>

<Index Key="Modulus" Subkey="of an rcwa group"><C>Modulus</C></Index>
<Index Key="Mod" Subkey="for an rcwa group"><C>Mod</C></Index>
<Index Key="ModulusOfRcwaMonoid" Subkey="for an rcwa group">
  <C>ModulusOfRcwaMonoid</C>
</Index>
<Index Key="Multiplier" Subkey="of an rcwa group"><C>Multiplier</C></Index>
<Index Key="Mult" Subkey="for an rcwa group"><C>Mult</C></Index>
<Index Key="Divisor" Subkey="of an rcwa group"><C>Divisor</C></Index>
<Index Key="Div" Subkey="for an rcwa group"><C>Div</C></Index>
<Index Key="PrimeSet" Subkey="of an rcwa group"><C>PrimeSet</C></Index>
<Index Key="IsIntegral" Subkey="for an rcwa group"><C>IsIntegral</C></Index>
<Index Key="IsClassWiseOrderPreserving" Subkey="for an rcwa group">
  <C>IsClassWiseOrderPreserving</C>
</Index>
<Index Key="IsSignPreserving" Subkey="for an rcwa group">
  <C>IsSignPreserving</C>
</Index>

Basic attributes of an rcwa group which are derived from the coefficients
of its elements are <C>Modulus</C>, <C>Multiplier</C>, <C>Divisor</C> and
<C>PrimeSet</C>.
The <E>modulus</E> of an rcwa group is the lcm of the moduli of its
elements if such an lcm exists, i.e. if the group is tame, and 0 otherwise.
The <E>multiplier</E> respectively <E>divisor</E> of an rcwa group is the
lcm of the multipliers respectively divisors of its elements in case such
an lcm exists and <M>\infty</M> otherwise.
The <E>prime set</E> of an rcwa group is the union of the prime sets of
its elements.
There are shorthands <C>Mod</C>, <C>Mult</C> and <C>Div</C> defined for
<C>Modulus</C>, <C>Multiplier</C> and <C>Divisor</C>, respectively.
An rcwa group is called <E>integral</E> respectively
<E>class-wise order-preserving</E> if all of its elements are so.
There are corresponding methods available for <C>IsIntegral</C>
and <C>IsClassWiseOrderPreserving</C>. There is a property
<C>IsSignPreserving</C>, which indicates whether a given rcwa group
over&nbsp;<M>\mathbb{Z}</M> acts on the set of nonnegative integers.
The latter holds for any subgroup of CT(<M>\mathbb{Z}</M>).

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,6),
>               ClassReflection(2,4));
<rcwa group over Z with 3 generators>
gap> List([Modulus,Multiplier,Divisor,PrimeSet,IsIntegral,
>          IsClassWiseOrderPreserving,IsSignPreserving],f->f(G));
[ 24, 2, 2, [ 2, 3 ], false, false, false ]
]]>
</Example>

</Section>

<!-- #################################################################### -->

<Section Label="sec:InvestigatingRcwaGroups">
<Heading>
  Basic routines for investigating residue-class-wise affine groups
</Heading>

In the previous section we have seen how to construct rcwa groups.
The purpose of this section is to describe how to obtain information on
the structure of an rcwa group and on its action on the underlying ring.
The easiest way to get some information on the group structure is
a dedicated method for the operation <C>StructureDescription</C>:

<ManSection>
  <Meth Name="StructureDescription" Arg="G" Label="for an rcwa group"/>
  <Returns>
    A string which describes the structure of the rcwa group&nbsp;<A>G</A>
    to some extent.
  </Returns>
  <Description>
    The attribute <C>StructureDescription</C> for finite groups is
    documented in the &GAP; Reference Manual. Therefore we describe here
    only issues which are specific to infinite groups, and in particular
    to rcwa groups. <P/>

    Wreath products are denoted by&nbsp;<C>wr</C>, and free products are
    denoted by&nbsp;<C>*</C>. The infinite cyclic group <M>(\mathbb{Z},+)</M>
    is denoted by&nbsp;<C>Z</C>, the infinite dihedral group is denoted
    by&nbsp;<C>D0</C> and free groups of rank <M>2,3,4,\dots</M>
    are denoted by&nbsp;<C>F2</C>, <C>F3</C>, <C>F4</C>,&nbsp;<M>\dots</M>.
    While for finite groups the symbol&nbsp;<C>.</C> is used to denote a
    non-split extension, for rcwa groups in general it stands for an
    extension which may be split or not.
    For wild groups in most cases it happens that there is a large section
    on which no structural information can be obtained. Such sections of the
    group with unknown structure are denoted by <C>&lt;unknown&gt;</C>.
    In general, the structure of a section denoted by <C>&lt;unknown&gt;</C>
    can be very complicated and very difficult to exhibit.
    While for isomorphic finite groups always the same structure
    description is computed, this cannot be guaranteed for isomorphic
    rcwa groups.
<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));;
gap> StructureDescription(G);
"(Z x Z x Z x Z x Z x Z x Z) . (C2 x S7)"
gap> G := Group(ClassTransposition(0,2,1,4),
>               ClassShift(2,4),ClassReflection(1,2));;
gap> StructureDescription(G:short);
"Z^2.((S3xS3):2)"
gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),
>                                                    CyclicGroup(2))));;
gap> G := DirectProduct(PSL2Z,F2);
<wild rcwa group over Z with 4 generators>
gap> StructureDescription(G);
"(C3 * C2) x F2"
gap> G := WreathProduct(G,CyclicGroup(IsRcwaGroupOverZ,infinity));
<wild rcwa group over Z with 5 generators>
gap> StructureDescription(G);
"((C3 * C2) x F2) wr Z"
gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;
gap> G := Group(Collatz,ClassShift(0,1));;
gap> StructureDescription(G:short);
"<unknown>.Z"
]]>
</Example>
  </Description>
</ManSection>

However the extent to which the structure of an rcwa group can be exhibited
automatically is certainly limited. In general, one can find out much more
about the structure of a given rcwa group in an interactive session using
the functionality described in the rest of this section and elsewhere in
this manual. <P/>

<Index Key="Size" Subkey="for an rcwa group"><C>Size</C></Index>

The order of an rcwa group can be computed by the operation <C>Size</C>.
An rcwa group is finite if and only if it is tame and its action on a
suitably chosen respected partition (see&nbsp;<Ref Attr="RespectedPartition"
Label="of a tame rcwa group"/>) is faithful.
Hence the problem of computing the order of an rcwa group reduces to
the problem of deciding whether it is tame, the problem of deciding whether
it acts faithfully on a respected partition and the problem of computing the
order of the finite permutation group induced on the respected partition.

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,3),
>               ClassReflection(0,5));
<rcwa group over Z with 3 generators>
gap> Size(G);
46080
]]>
</Example>

<Index Key="IsomorphismPermGroup" Subkey="for a finite rcwa group">
  <C>IsomorphismPermGroup</C>
</Index>

For a finite rcwa group, an isomorphism to a permutation group can be
computed by <C>IsomorphismPermGroup</C>:

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,3,1,3));;
gap> IsomorphismPermGroup(G);
[ ClassTransposition(0,2,1,2), ClassTransposition(0,3,1,3) ] -> 
[ (1,2)(3,4)(5,6), (1,2)(4,5) ]
]]>
</Example>

<Index Key="rcwa group" Subkey="membership test">rcwa group</Index>

Next we say a few words about the membership test for rcwa groups.
For tame rcwa groups, membership or non-membership can always be decided.
For wild groups, membership or non-membership can very often be decided
quite quick as well, but not always. On Info level&nbsp;2 of <C>InfoRCWA</C>
the membership test provides information on reasons why the given rcwa
permutation is an element of the given rcwa group or&nbsp;not. <P/>

The direct product of two free groups of rank&nbsp;2 can faithfully be
represented as an rcwa group. According to&nbsp;<Cite Key="Mihailova58"/>
this implies that in general the membership problem for rcwa groups is
algorithmically undecidable.

<Alt Only="LaTeX">\pagebreak[4]</Alt>

<Example>
<![CDATA[
gap> G := Group(ClassShift(0,3),ClassTransposition(0,3,2,6));;
gap>  ClassShift(2,6)^7 * ClassTransposition(0,3,2,6)
>   * ClassShift(0,3)^-3 in G;
true
gap> ClassShift(0,1) in G;
false
]]>
</Example>

<Index Key="rcwa group" Subkey="conjugacy problem">rcwa group</Index>
<Index Key="IsConjugate" Subkey="for elements of RCWA(R)">
  <C>IsConjugate</C>
</Index>
<Index Key="IsConjugate" Subkey="for elements of CT(R)">
  <C>IsConjugate</C>
</Index>

The conjugacy problem for rcwa groups is difficult, and &RCWA; provides
only methods to solve it in some reasonably easy cases.

<Example>
<![CDATA[
gap> IsConjugate(RCWA(Integers),
>                ClassTransposition(0,2,1,4),ClassShift(0,1));
false
gap> IsConjugate(CT(Integers),ClassTransposition(0,2,1,6),
>                             ClassTransposition(1,4,0,8));
true
gap> g := RepresentativeAction(CT(Integers),ClassTransposition(0,2,1,6),
>                                           ClassTransposition(1,4,0,8));
<bijective rcwa mapping of Z with modulus 48>
gap> ClassTransposition(0,2,1,6)^g = ClassTransposition(1,4,0,8);
true
]]>
</Example>

<Index Key="NrConjugacyClassesOfRCWAZOfOrder">
  <C>NrConjugacyClassesOfRCWAZOfOrder</C>
</Index>

The number of conjugacy classes of RCWA(<M>\mathbb{Z}</M>) of elements of
given order is known, cf. Corollary&nbsp;2.7.1&nbsp;(b)
in&nbsp;<Cite Key="Kohl05"/>. It can be determined by the function
<C>NrConjugacyClassesOfRCWAZOfOrder</C>:

<Example>
<![CDATA[
gap> List([2,105],NrConjugacyClassesOfRCWAZOfOrder);
[ infinity, 218 ]
]]>
</Example>

<Index Key="IsTame" Subkey="for an rcwa group"><C>IsTame</C></Index>
There is a property <C>IsTame</C> which indicates whether an rcwa group
is tame or not:

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(1,3));;
gap> H := Group(ClassTransposition(0,2,1,6),ClassShift(1,3));;
gap> IsTame(G);
true
gap> IsTame(H);
false
]]>
</Example>

<Index Key="IsSolvable" Subkey="for an rcwa group"><C>IsSolvable</C></Index>
<Index Key="IsPerfect"  Subkey="for an rcwa group"><C>IsPerfect</C></Index>
<Index Key="DerivedSubgroup" Subkey="of an rcwa group">
  <C>DerivedSubgroup</C>
</Index>
<Index Key="Index" Subkey="for rcwa groups"><C>Index</C></Index>
<Index Key="IsomorphismMatrixGroup" Subkey="for an rcwa group">
  <C>IsomorphismMatrixGroup</C>
</Index>
<Index Key="Exponent" Subkey="of an rcwa group"><C>Exponent</C></Index>

For tame rcwa groups, there are methods for <C>IsSolvable</C> and
<C>IsPerfect</C> available, and usually derived subgroups and subgroup
indices can be computed as well. Linear representations of tame groups
over the rationals can be determined by the operation
<C>IsomorphismMatrixGroup</C>. Testing a wild group for solvability
or perfectness is currently not always feasible, and wild groups
have in general no faithful finite-dimensional linear representations.
There is a method for <C>Exponent</C> available, which works basically
for any rcwa group.

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(1,2));;
gap> IsPerfect(G);
false
gap> IsSolvable(G);
true
gap> D1 := DerivedSubgroup(G);; D2 := DerivedSubgroup(D1);;
gap> IsAbelian(D2);
true
gap> Index(G,D1); Index(D1,D2);
infinity
9
gap> StructureDescription(G); StructureDescription(D1);
"(Z x Z x Z) . S3"
"(Z x Z) . C3"
gap> Q := D1/D2;
Group([ (), (1,2,4)(3,5,7)(6,8,9), (1,3,6)(2,5,8)(4,7,9) ])
gap> StructureDescription(Q); 
"C3 x C3"
gap> Exponent(G);
infinity
gap> phi := IsomorphismMatrixGroup(G);;
gap> Display(Image(phi,ClassTransposition(0,2,1,4)));
[ [     0,     0,   1/2,  -1/2,     0,     0 ], 
  [     0,     0,     0,     1,     0,     0 ], 
  [     2,     1,     0,     0,     0,     0 ], 
  [     0,     1,     0,     0,     0,     0 ], 
  [     0,     0,     0,     0,     1,     0 ], 
  [     0,     0,     0,     0,     0,     1 ] ]
]]>
</Example>

When investigating a group, a basic task is to find relations among
the generators:

<ManSection>
  <Meth Name="EpimorphismFromFpGroup"
        Arg="G, r" Label="for an rcwa group and a search radius"/>
  <Returns>
    An epimorphism from a finitely presented group to the
    rcwa group&nbsp;<A>G</A>.
  </Returns>
  <Description>
    The argument <A>r</A> is the <Q>search radius</Q>, i.e. the
    radius of the ball around&nbsp;1 which is scanned for relations.
    In general, the larger <A>r</A> is chosen the smaller the kernel
    of the returned epimorphism is. If the group&nbsp;<A>G</A> has
    finite presentations, the kernel will in principle get trivial
    provided that <A>r</A> is chosen large enough.  <P/>

    Both the performance and the returned epimorphism depend on whether
    the package <Package>FR</Package>&nbsp;<Cite Key="FR"/> is present
    or&nbsp;not.

<Alt Only="LaTeX">\pagebreak[4]</Alt>

<Example>
<![CDATA[
gap> a := ClassTransposition(2,4,3,4 :Name:="a");;
gap> b := ClassTransposition(4,6,8,12:Name:="b");;
gap> c := ClassTransposition(3,4,4,6 :Name:="c");;
gap> G := Group(a,b,c);
<rcwa group over Z with 3 generators>
gap> phi := EpimorphismFromFpGroup(G,6);
[ a, b, c ] -> [ a, b, c ]
gap> RelatorsOfFpGroup(Source(phi));
[ a^2, b^2, c^2, c*b*c*b*c*b, c*b*c*a*c*b*c*a*c*b*c*a, 
  b*a*b*a*b*a*b*a*b*a*b*a ]
]]>
</Example>
  </Description>
</ManSection>

A related very common task is to factor group elements into generators:

<ManSection>
  <Meth Name ="PreImagesRepresentative" Arg="phi, g"
        Label="for an epi. from a free group to an rcwa group"/>
  <Returns>
    A representative of the set of preimages of&nbsp;<A>g</A> under
    the epimorphism&nbsp;<A>phi</A> from a free group to an rcwa group.
  </Returns>
  <Description>
    The epimorphism <A>phi</A> must map the generators of the free
    group to the generators of the rcwa group one-by-one. <P/>

    This method can be used for factoring elements of rcwa groups
    into generators. The implementation is based on
    <C>RepresentativeActionPreImage</C>, see 
    <Ref Oper="RepresentativeAction"
         Label="G, source, destination, action"/>. <P/>

    <Index Key="PreImagesRepresentatives"
           Subkey="for an epi. from a free group to an rcwa group">
      <C>PreImagesRepresentatives</C>
    </Index>

    Quite frequently, computing several preimages is not harder than
    computing just one, i.e. often several preimages are found
    simultaneously. The operation <C>PreImagesRepresentatives</C>
    takes care of this. It takes the same arguments as
    <C>PreImagesRepresentative</C> and returns a list of preimages.
    If multiple preimages are found, their quotients give rise to nontrivial
    relations among the generators of the image of&nbsp;<A>phi</A>.
<Example>
<![CDATA[
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; SetName(a,"a");
gap> b := ClassShift(0,1:Name:="b");;
gap> G := Group(a,b);; # G = <<Collatz permutation>, n -> n + 1>
gap> phi := EpimorphismFromFreeGroup(G);;
gap> g := Comm(a^2*b^4,a*b^3); # a sample element to be factored
<bijective rcwa mapping of Z with modulus 8>
gap> PreImagesRepresentative(phi,g); # -> a factorization of g
b^-4*a^-1*b^-1*a^-1*b^3*a*b^-1*a*b^3
gap> g = b^-4*a^-1*b^-1*a^-1*b^3*a*b^-1*a*b^3; # check
true
gap> g := Comm(a*b,Comm(a,b^3));
<bijective rcwa mapping of Z with modulus 8>
gap> pre := PreImagesRepresentatives(phi,g);
[ b^-1*a^-1*b^-1*a^-1*b^3*a*b*a*b^-2, b^-1*a^-1*b*a^-1*b^3*a*b^-1*a*b^-2 ]
gap> rel := CyclicallyReducedWord(pre[1]/pre[2]); # -> a nontriv. relation
b^-1*a^-1*b^3*a*b^2*a^-1*b^-3*a*b^-1
gap> rel^phi;
IdentityMapping( Integers )
]]>
</Example>
  </Description>
</ManSection>

</Section>

<!-- #################################################################### -->

<Section Label="sec:ActionOnR">
<Heading>
  The natural action of an rcwa group on the underlying ring
</Heading>

Knowing a natural permutation representation of a group usually helps
significantly in computing in it and in obtaining results on its structure.
This holds particularly for the natural action of an rcwa group on its
underlying ring. In this section we describe &RCWA;'s functionality
related to this action. <P/>

<Index Key="Support" Subkey="of an rcwa group"><C>Support</C></Index>
<Index Key="MovedPoints" Subkey="of an rcwa group"><C>MovedPoints</C></Index>
<Index Key="IsTransitive" Subkey="for an rcwa group, on its underlying ring">
  <C>IsTransitive</C>
</Index>

The support, i.e. the set of moved points, of an rcwa group can be determined
by <C>Support</C> or <C>MovedPoints</C> (these are synonyms).
Testing for transitivity on the underlying ring is often feasible:

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(1,2,0,4),ClassShift(0,2));;
gap> IsTransitive(G,Integers);
true
]]>
</Example>

There are methods to compute orbits under the action of an rcwa group:

<ManSection>
  <Heading> Orbit (for an rcwa group and either a point or a set) </Heading>
  <Meth Name="Orbit" Arg="G, point" Label="for an rcwa group and a point"/>
  <Meth Name="Orbit" Arg="G, set"   Label="for an rcwa group and a set"/>
  <Returns>
    The orbit of the point&nbsp;<A>point</A> respectively the
    set&nbsp;<A>set</A> under the natural action of the rcwa
    group&nbsp;<A>G</A> on its underlying ring.
  </Returns>
  <Description>
    The second argument can either be an element or a subset of
    the underlying ring of the rcwa group&nbsp;<A>G</A>.
    Since orbits under the action of rcwa groups can be finite
    or infinite, and since infinite orbits are not necessarily
    residue class unions, the orbit may either be returned in
    the form of a list, in the form of a residue class union
    or in the form of an orbit object. It is possible to loop over
    orbits returned as orbit objects, they can be compared and
    there is a membership test for them. However note that equality
    and membership for such orbits cannot always be decided.
<Example>
<![CDATA[
gap> G := Group(ClassShift(0,2),ClassTransposition(0,3,1,3));
<rcwa group over Z with 2 generators>
gap> Orbit(G,0);
Z \ 5(6)
gap> Orbit(G,5);
[ 5 ]
gap> Orbit(G,ResidueClass(0,2));
[ 0(2), 1(6) U 2(6) U 3(6), 1(3) U 3(6), 0(3) U 1(6), 0(3) U 4(6), 
  1(3) U 0(6), 0(3) U 2(6), 0(6) U 1(6) U 2(6), 2(6) U 3(6) U 4(6), 
  1(3) U 2(6) ]
gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,2,1,4),
>               ClassReflection(0,3));
<rcwa group over Z with 3 generators>
gap> orb := Orbit(G,2);
<orbit of 2 under <wild rcwa group over Z with 3 generators>>
gap> 1015808 in orb;
true
gap> First(orb,n->ForAll([n,n+2,n+6,n+8,n+30,n+32,n+36,n+38],IsPrime));
-19
]]>
</Example>
  </Description>
</ManSection>

&RCWA; permits drawing pictures of orbits of rcwa groups
on&nbsp;<M>\mathbb{Z}^2</M>. The pictures are written to files in bitmap-
(bmp-) format. The author has successfully tested this feature both under
Linux and under Windows, and the produced pictures can be processed further
with many common graphics programs:

<ManSection>
  <Func Name="DrawOrbitPicture"
        Arg="G, p0, r, h, w, colored, palette, filename"
        Label="G, p0, r, h, w, colored, palette, filename"/>
  <Returns> Nothing. </Returns>
  <Description>
    Draws a picture of the orbit(s) of the point(s) <A>p0</A> under the
    action of the group <A>G</A> on&nbsp;<M>\mathbb{Z}^2</M>.
    The argument <A>p0</A> is either one point or a list of points.
    The argument <A>r</A> denotes the radius of the ball around <A>p0</A>
    to be computed. The size of the created picture is
    <A>h</A>&nbsp;x&nbsp;<A>w</A> pixels.
    The argument <A>colored</A> is a boolean which indicates whether a 24-bit
    True-Color picture or a monochrome picture should be drawn.
    In the former case, <A>palette</A> must be a list of triples of integers
    in the range <M>0, \dots, 255</M>, denoting the RGB values of colors to
    be used. In the latter case, <A>palette</A> is not used, and any value
    can be passed. The picture is written in bitmap- (bmp-) format to a file
    named <A>filename</A>. This is done using the utility function
    <Ref Func="SaveAsBitmapPicture" Label="picture, filename"/>.
<Log>
<![CDATA[
gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(2),
>                                                    CyclicGroup(3))));;
gap> DrawOrbitPicture(PSL2Z,[0,1],20,512,512,false,fail,"example1.bmp");
gap> DrawOrbitPicture(PSL2Z,Combinations([1..4],2),20,512,512,true,
>                     [[255,0,0],[0,255,0],[0,0,255]],"example2.bmp");
]]>
</Log>
  </Description>
</ManSection>

The pictures drawn in the examples are shown on &RCWA;'s webpage. <P/>

Finite orbits give rise to finite quotients of a group, and finite cycles
can help to check for conjugacy. Therefore it is important to be able
to determine them:

<ManSection>
  <Heading>
    ShortOrbits (for rcwa groups) &amp; ShortCycles (for rcwa permutations)
  </Heading>
  <Oper Name="ShortOrbits" Arg="G, S, maxlng"
        Label="for rcwa group, set of points and bound on length"/>
  <Oper Name="ShortCycles" Arg="g, S, maxlng"
        Label="for rcwa permutation, set of points and bound on length"/>
  <Oper Name="ShortCycles" Arg="g, maxlng"
        Label="for rcwa permutation and bound on length"/>
  <Returns>
    In the first form a list of all finite orbits of the rcwa
    group&nbsp;<A>G</A> of length at most <A>maxlng</A> which intersect
    nontrivially with the set&nbsp;<A>S</A>. <P/>

    In the second form a list of all cycles of the rcwa permutation <A>g</A>
    of length at most&nbsp;<A>maxlng</A> which intersect nontrivially with
    the set&nbsp;<A>S</A>. <P/>

    In the third form a list of all cycles of the rcwa permutation <A>g</A>
    of length at most <A>maxlng</A> which do not correspond to cycles
    consisting of residue classes.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> G := Group(ClassTransposition(1,4,2,4)*ClassTransposition(1,4,3,4),
>               ClassTransposition(3,9,6,18)*ClassTransposition(1,6,3,9));;
gap> List(ShortOrbits(G,[-15..15],100),
>         orb->StructureDescription(Action(G,orb)));
[ "A15", "A4", "1", "1", "C3", "1", "((C2 x C2 x C2) : C7) : C3", "1", 
  "1", "C3", "A19" ]
gap> ShortCycles(mKnot(7),[1..100],20);
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7, 8 ], [ 9, 10 ], 
  [ 11, 12 ], [ 13, 14, 16, 18, 20, 22, 19, 17, 15 ], [ 21, 24 ], 
  [ 23, 26 ], [ 25, 28, 32, 36, 31, 27, 30, 34, 38, 33, 29 ], 
  [ 35, 40 ], [ 37, 42, 48, 54, 47, 41, 46, 52, 45, 39, 44, 50, 43 ], 
  [ 77, 88, 100, 114, 130, 148, 127, 109, 124, 107, 122, 105, 120, 103, 
      89 ] ]
]]>
</Example>
  </Description>
</ManSection>

Frequently one needs to compute balls of certain radius around points or
group elements, be it to estimate the growth of a group, be it to see how
an orbit looks like, be it to search for a group element with certain
properties or be it for other purposes:

<ManSection>
  <Heading>
    Ball (for group, element and radius or group, point, radius and action)
  </Heading>
  <Meth Name ="Ball" Arg="G, g, r"
        Label="for group, element and radius"/>
  <Meth Name ="Ball" Arg="G, p, r, action"
        Label="for group, point, radius and action"/>
  <Returns>
    The ball of radius&nbsp;<A>r</A> around the element&nbsp;<A>g</A> in
    the group&nbsp;<A>G</A>, respectively
    the ball of radius&nbsp;<A>r</A> around the point&nbsp;<A>p</A> under
    the action&nbsp;<A>action</A> of the group&nbsp;<A>G</A>.
  </Returns>
  <Description>
    All balls are understood with respect to
    <C>GeneratorsOfGroup(<A>G</A>)</C>.
    As membership tests can be expensive, the former method does not check
    whether <A>g</A> is indeed an element of&nbsp;<A>G</A>.
    The methods require that element- / point comparisons are cheap.
    They are not only applicable to rcwa groups.
    If the option <A>Spheres</A> is set, the ball is splitted up and
    returned as a list of spheres.
<Example>
<![CDATA[
gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(2),
>                                                    CyclicGroup(3))));;
gap> List([1..10],k->Length(Ball(PSL2Z,[0,1],k,OnTuples)));
[ 4, 8, 14, 22, 34, 50, 74, 106, 154, 218 ]
gap> Ball(Group((1,2),(2,3),(3,4)),(),2:Spheres);
[ [ () ], [ (3,4), (2,3), (1,2) ],
  [ (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,3,2) ] ]
]]>
</Example>
  </Description>
</ManSection>

It is possible to determine group elements which map a given tuple of elements
of the underlying ring to a given other tuple, if such elements exist:

<ManSection>
  <Meth Name="RepresentativeAction" Arg="G, source, destination, action"
        Label="G, source, destination, action"/>
  <Returns>
    An element of <A>G</A> which maps <A>source</A>
    to&nbsp;<A>destination</A> under the action given by&nbsp;<A>action</A>.
  </Returns>
  <Description>
    If an element satisfying this condition does not exist, this method
    either returns <C>fail</C> or runs into an infinite loop.
    The problem whether <A>source</A> and <A>destination</A> lie in
    the same orbit under the action <A>action</A> of&nbsp;<A>G</A> is hard,
    and in its general form most likely computationally undecidable. <P/>

    <Index Key="RepresentativeActionPreImage"
           Subkey="G, source, destination, action, F">
      <C>RepresentativeActionPreImage</C>
    </Index>

    In cases where rather a word in the generators of&nbsp;<A>G</A> than
    the actual group element is needed, one should use the operation
    <C>RepresentativeActionPreImage</C> instead. This operation takes
    five arguments. The first four are the same as those of
    <C>RepresentativeAction</C>, and the fifth is a free group whose
    generators are to be used as letters of the returned word. Note that
    <C>RepresentativeAction</C> calls <C>RepresentativeActionPreImage</C>
    and evaluates the returned word. The evaluation of the word can very
    well take most of the time if <A>G</A> is wild and coefficient
    explosion occurs. <P/>

    The algorithm is based on computing balls of increasing radius
    around <A>source</A> and <A>destination</A> until they intersect
    nontrivially.
<Example>
<![CDATA[
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; SetName(a,"a");
gap> b := ClassShift(1,4:Name:="b");; G := Group(a,b);;
gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],OnTuples);;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

              n mod 12              |                n^f
------------------------------------+------------------------------------
   0  2  3  6  8 11                 | n
   1  7 10                          | n - 3
   4                                | n + 1
   5  9                             | n + 4

gap> List([7,4,9],n->n^elm);
[ 4, 5, 13 ]
gap> elm := RepresentativeAction(G,[6,-3,8],[-9,4,11],OnPoints);;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

              n mod 12              |                n^f
------------------------------------+------------------------------------
   0  3  6                          | 2n/3
   1                                | (2n - 8)/3
   2  8 11                          | (4n + 1)/3
   4  7 10                          | (4n - 1)/3
   5                                | (4n - 17)/3
   9                                | (4n - 15)/3

gap> [6,-3,8]^elm; List([6,-3,8],n->n^elm); # `OnPoints' allows reordering
[ -9, 4, 11 ]
[ 4, -9, 11 ]
gap> F := FreeGroup("a","b");; phi := EpimorphismByGenerators(F,G);;
gap> w := RepresentativeActionPreImage(G,[10,-4,9,5],[4,5,13,-8],
>                                      OnTuples,F);
a*b^-1*a^-1*b^-1*a*b^-1*a*b*a*b^-2*a*b*a^-1*b
gap> elm := w^phi;
<bijective rcwa mapping of Z with modulus 324>
gap> List([10,-4,9,5],n->n^elm);
[ 4, 5, 13, -8 ]
]]>
</Example>
  </Description>
</ManSection>

Sometimes an rcwa group fixes a certain partition of the underlying ring
into unions of residue classes. If this happens, then any orbit is clearly
a subset of exactly one of these parts. Further, such a partition often
gives rise to proper quotients of the group:

<ManSection>
  <Oper Name ="Projections"
        Arg="G, m" Label="for an rcwa group and a modulus"/>
  <Returns>
    The projections of the rcwa group&nbsp;<A>G</A> to the unions of
    residue classes (mod&nbsp;<A>m</A>) which it fixes setwise.
  </Returns>
  <Description>
    The corresponding partition of a set of representatives for
    the residue classes (mod&nbsp;<A>m</A>) can be obtained by the
    operation <C>OrbitsModulo(<A>G</A>,<A>m</A>)</C>.
    <Index Key="OrbitsModulo" Subkey="for an rcwa group and a modulus">
      <C>OrbitsModulo</C>
    </Index>
<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,2,1,2),ClassShift(3,4));;
gap> Projections(G,4);
[ [ ClassTransposition(0,2,1,2), ClassShift(3,4) ] ->
    [ <bijective rcwa mapping of Z with modulus 4>,
      IdentityMapping( Integers ) ],
  [ ClassTransposition(0,2,1,2), ClassShift(3,4) ] ->
    [ <bijective rcwa mapping of Z with modulus 4>,
      <bijective rcwa mapping of Z with modulus 4> ] ]
gap> List(last,phi->Support(Image(phi)));
[ 0(4) U 1(4), 2(4) U 3(4) ]
]]>
</Example>
  </Description>
</ManSection>

Given two partitions of the underlying ring into the same number of
unions of residue classes, there is always an rcwa permutation which
maps the one to the other:

<ManSection>
  <Meth Name="RepresentativeAction" Arg="RCWA(R), P1, P2"
        Label="for RCWA(R) and 2 partitions of R into residue classes"/>
  <Returns>
    An element of RCWA(<M>R</M>) which maps the partition&nbsp;<A>P1</A>
    to&nbsp;<A>P2</A>.
  </Returns>
  <Description>
    The arguments <A>P1</A> and <A>P2</A> must be partitions of the
    underlying ring <M>R</M> into the same number of unions of residue
    classes.
    The method for <M>R = \mathbb{Z}</M> recognizes the option <C>IsTame</C>,
    which can be used to demand a tame result. If this option is set and
    there is no tame rcwa permutation which maps <A>P1</A> to&nbsp;<A>P2</A>,
    the method runs into an infinite loop. This happens if the condition
    in Theorem&nbsp;2.8.9 in&nbsp;<Cite Key="Kohl05"/> is not satisfied.
    If the option <C>IsTame</C> is not set and the partitions <A>P1</A>
    and <A>P2</A> both consist entirely of single residue classes, then
    the returned mapping is affine on any residue class in&nbsp;<A>P1</A>.
<Example>
<![CDATA[
gap> P1 := AllResidueClassesModulo(3);
[ 0(3), 1(3), 2(3) ]
gap> P2 := List([[0,2],[1,4],[3,4]],ResidueClass);
[ 0(2), 1(4), 3(4) ]
gap> elm := RepresentativeAction(RCWA(Integers),P1,P2);
<bijective rcwa mapping of Z with modulus 3>
gap> P1^elm = P2;
true
gap> IsTame(elm);
false
gap> elm := RepresentativeAction(RCWA(Integers),P1,P2:IsTame);
<tame bijective rcwa mapping of Z with modulus 24>
gap> P1^elm = P2;
true
gap> elm := RepresentativeAction(RCWA(Integers),
>             [ResidueClass(1,3),
>              ResidueClassUnion(Integers,3,[0,2])],
>             [ResidueClassUnion(Integers,5,[2,4]),
>              ResidueClassUnion(Integers,5,[0,1,3])]);
<bijective rcwa mapping of Z with modulus 6>
gap> [ResidueClass(1,3),ResidueClassUnion(Integers,3,[0,2])]^elm;
[ 2(5) U 4(5), Z \ 2(5) U 4(5) ]
]]>
</Example>
  </Description>
</ManSection>

</Section>

<!-- #################################################################### -->

<Section Label="sec:MethodsForTameGroups">
<Heading>
  Special attributes of tame residue-class-wise affine groups
</Heading>

There are a couple of attributes which a priori make only sense for tame
rcwa groups. With their help, various structural information about a given
such group can be obtained.
We have already seen above that there are for example methods for
<C>IsSolvable</C>, <C>IsPerfect</C> and <C>DerivedSubgroup</C> available
for tame rcwa groups, while testing wild groups for solvability or
perfectness is currently not always feasible. The purpose of this section
is to describe the specific attributes of tame groups which are needed for
these computations.

<ManSection>
  <Heading>
    RespectedPartition (of a tame rcwa group or -permutation)
  </Heading>
  <Attr Name="RespectedPartition"
        Arg="G" Label="of a tame rcwa group"/>
  <Attr Name="RespectedPartition"
        Arg="g" Label="of a tame rcwa permutation"/>
  <Returns>
    A respected partition of the rcwa group <A>G</A> /
    of the rcwa permutation&nbsp;<A>g</A>.
  </Returns>
  <Description>
    A tame element <M>g</M>&nbsp;<M>\in</M>&nbsp;RCWA(<M>R</M>) permutes a
    partition of&nbsp;<M>R</M> into finitely many residue classes on all of
    which it is affine.
    Given a tame group <M>G</M>&nbsp;<M>&lt;</M>&nbsp;RCWA(<M>R</M>),
    there is a common such partition for all elements of&nbsp;<M>G</M>.
    We call the mentioned partitions <E>respected partitions</E>
    of&nbsp;<M>g</M> or&nbsp;<M>G</M>, respectively. <P/>

    An rcwa group or an rcwa permutation has a respected partition
    if and only if it is tame. This holds either by definition or by
    Theorem&nbsp;2.5.8 in&nbsp;<Cite Key="Kohl05"/>, depending on how
    one introduces the notion of tameness. <P/>

    <Index Key="RespectedPartitionShort" Subkey="for a tame rcwa group">
      <C>RespectedPartitionShort</C>
    </Index>
    <Index Key="RespectedPartitionShort" Subkey="for a tame rcwa permutation">
      <C>RespectedPartitionShort</C>
    </Index>
    <Index Key="RespectedPartitionLong" Subkey="for a tame rcwa group">
      <C>RespectedPartitionLong</C>
    </Index>
    <Index Key="RespectedPartitionLong" Subkey="for a tame rcwa permutation">
      <C>RespectedPartitionLong</C>
    </Index>
    Related attributes are <C>RespectedPartitionShort</C> and
    <C>RespectedPartitionLong</C>. The first of these denotes a respected
    partition consisting of residue classes <M>r(m)</M> where <M>m</M>
    divides the modulus of&nbsp;<A>G</A> or&nbsp;<A>g</A>, respectively.
    The second denotes a respected partition consisting of residue classes
    <M>r(m)</M> where the modulus of <A>G</A> (respectively <A>g</A>)
    divides&nbsp;<M>m</M>. <P/>

    <Index Key="RespectsPartition" Subkey="for an rcwa group">
      <C>RespectsPartition</C>
    </Index>
    <Index Key="RespectsPartition" Subkey="for an rcwa permutation">
      <C>RespectsPartition</C>
    </Index>
    There is an operation <C>RespectsPartition(<A>G</A>,<A>P</A>)</C> /
    <C>RespectsPartition(<A>g</A>,<A>P</A>)</C>, which tests whether
    <A>G</A> or&nbsp;<A>g</A> respects a given partition&nbsp;<A>P</A>.
    The permutation induced by <A>g</A> on&nbsp;<C>P</C> can be computed
    efficiently by <C>PermutationOpNC(<A>g</A>,P,OnPoints)</C>.
    <Index Key="PermutationOpNC" Subkey="g, P, OnPoints">
      <C>PermutationOpNC</C>
    </Index>
<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));
<rcwa group over Z with 2 generators>
gap> IsTame(G);
true
gap> Size(G);
infinity
gap> P := RespectedPartition(G);
[ 3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12) ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Heading>
    ActionOnRespectedPartition &amp; KernelOfActionOnRespectedPartition
  </Heading>
  <Attr Name="ActionOnRespectedPartition"
        Arg="G" Label="for a tame rcwa group"/>
  <Attr Name="KernelOfActionOnRespectedPartition"
        Arg="G" Label="for a tame rcwa group"/>
  <Returns>
    The action of the tame rcwa group&nbsp;<A>G</A> on
    <C>RespectedPartition(<A>G</A>)</C> or the kernel of
    this action, respectively.
  </Returns>
  <Description>
    The method for <C>KernelOfActionOnRespectedPartition</C> uses the
    package <Package>Polycyclic</Package>&nbsp;<Cite Key="Polycyclic"/>.

    The rank of the largest free abelian subgroup of the kernel of the
    action of&nbsp;<A>G</A> on its stored respected partition can be
    computed by <C>RankOfKernelOfActionOnRespectedPartition(<A>G</A>)</C>.
<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));;
gap> H := ActionOnRespectedPartition(G);
Group([ (3,7)(5,8), (3,4,5,6) ])
gap> H = Action(G,P);
true
gap> Size(H);
48
gap> K := KernelOfActionOnRespectedPartition(G);
<rcwa group over Z with 3 generators>
gap> RankOfKernelOfActionOnRespectedPartition(G);
3
gap> Index(G,K);
48
gap> List(GeneratorsOfGroup(K),Factorization);
[ [ ClassShift(0,4)^2 ], [ ClassShift(2,4)^2 ], [ ClassShift(1,6)^2 ] ]
gap> Image(IsomorphismPcpGroup(K));
Pcp-group with orders [ 0, 0, 0 ]
]]>
</Example>
  </Description>
</ManSection>

Let <M>G</M> be a tame rcwa group over&nbsp;<M>\mathbb{Z}</M>, let
<M>\mathcal{P}</M> be a respected partition of&nbsp;<M>G</M> and put
<M>m := |\mathcal{P}|</M>. Then there is an rcwa permutation <M>g</M>
which maps <M>\mathcal{P}</M> to the partition of&nbsp;<M>\mathbb{Z}</M>
into the residue classes (mod&nbsp;<M>m</M>), and the conjugate <M>G^g</M>
of&nbsp;<M>G</M> under such a permutation is integral
(cf. <Cite Key="Kohl05"/>, Theorem&nbsp;2.5.14). <P/>

<Index Key="IntegralConjugate" Subkey="of a tame rcwa group">
  <C>IntegralConjugate</C>
</Index>
<Index Key="IntegralConjugate" Subkey="of a tame rcwa permutation">
  <C>IntegralConjugate</C>
</Index>
<Index Key="IntegralizingConjugator" Subkey="of a tame rcwa group">
  <C>IntegralizingConjugator</C>
</Index>
<Index Key="IntegralizingConjugator" Subkey="of a tame rcwa permutation">
  <C>IntegralizingConjugator</C>
</Index>

The conjugate <M>G^g</M> can be determined by the operation
<C>IntegralConjugate</C>, and the conjugating permutation&nbsp;<M>g</M>
can be determined by the operation <C>IntegralizingConjugator</C>.
Both operations are applicable to rcwa permutations as well.
Note that a tame rcwa group does not determine its integral conjugate
uniquely.

<Example>
<![CDATA[
gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));;
gap> G^IntegralizingConjugator(G) = IntegralConjugate(G);
true
gap> RespectedPartition(G);
[ 3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12) ]
gap> RespectedPartition(G)^IntegralizingConjugator(G);
[ 0(8), 1(8), 2(8), 3(8), 4(8), 5(8), 6(8), 7(8) ]
gap> last = RespectedPartition(IntegralConjugate(G));
true
]]>
</Example>

</Section>

<!-- #################################################################### -->

<Section Label="sec:Random">
<Heading>Generating pseudo-random elements of RCWA(R) and CT(R)</Heading>

<Index Key="Random" Subkey="RCWA(R)"><C>Random</C></Index>
<Index Key="Random" Subkey="CT(R)"><C>Random</C></Index>
There are methods for the operation <C>Random</C> for RCWA(<M>R</M>)
and CT(<M>R</M>). These methods are designed to be suitable for generating
interesting examples. No particular distribution is guaranteed.

<Log>
<![CDATA[
gap> elm := Random(RCWA(Integers));;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

              n mod 12              |                n^f
------------------------------------+------------------------------------
   0  2  4  6  8 10                 | 3n + 2
   1  5  9                          | -n + 2
   3  7                             | (n - 7)/2
  11                                | (-n + 20)/3

]]>
</Log>

The elements which are returned by this method are obtained by
multiplying class shifts (see <Ref Func="ClassShift" Label="r, m"/>),
class reflections (see <Ref Func="ClassReflection" Label="r, m"/>) and
class transpositions (see <Ref Func="ClassTransposition"
                          Label="r1, m1, r2, m2"/>).
These factors can be retrieved by factoring:

<Log>
<![CDATA[
gap> Factorization(elm);
[ ClassTransposition(0,2,3,4), ClassTransposition(3,4,4,6),
  ClassShift(0,2)^-1, ClassReflection(3,4), ClassReflection(1,4) ]
]]>
</Log>

There is an auxiliary function <C>ClassPairs([<A>R</A>,] <A>m</A>)</C>,
which is used in this context.
<Index Key="ClassPairs" Subkey="m"><C>ClassPairs</C></Index>
<Index Key="ClassPairs" Subkey="R, m"><C>ClassPairs</C></Index>
In its one-argument form, this function returns a list of 4-tuples
<M>(r_1,m_1,r_2,m_2)</M> of integers corresponding to the unordered
pairs of disjoint residue classes <M>r_1(m_1)</M> and <M>r_2(m_2)</M>
with <M>m_1, m_2 \leq m</M>. In its two-argument form, it does
<Q>the equivalent</Q> for the ring&nbsp;<A>R</A>.

<Example>
<![CDATA[
gap> List(ClassPairs(4),ClassTransposition);
[ ClassTransposition(0,2,1,2), ClassTransposition(0,2,1,4),
  ClassTransposition(0,2,3,4), ClassTransposition(0,3,1,3),
  ClassTransposition(0,3,2,3), ClassTransposition(0,4,1,4),
  ClassTransposition(0,4,2,4), ClassTransposition(0,4,3,4),
  ClassTransposition(1,2,0,4), ClassTransposition(1,2,2,4),
  ClassTransposition(1,3,2,3), ClassTransposition(1,4,2,4),
  ClassTransposition(1,4,3,4), ClassTransposition(2,4,3,4) ]
gap> List(last,TransposedClasses);
[ [ 0(2), 1(2) ], [ 0(2), 1(4) ], [ 0(2), 3(4) ], [ 0(3), 1(3) ],
  [ 0(3), 2(3) ], [ 0(4), 1(4) ], [ 0(4), 2(4) ], [ 0(4), 3(4) ],
  [ 1(2), 0(4) ], [ 1(2), 2(4) ], [ 1(3), 2(3) ], [ 1(4), 2(4) ],
  [ 1(4), 3(4) ], [ 2(4), 3(4) ] ]
]]>
</Example>

</Section>

<!-- #################################################################### -->

<Section Label="sec:CategoriesOfRcwaGroups">
<Heading>The categories of residue-class-wise affine groups</Heading>

<ManSection>
  <Filt Name="IsRcwaGroup" Arg="G"/>
  <Filt Name="IsRcwaGroupOverZ" Arg="G"/>
  <Filt Name="IsRcwaGroupOverZ_pi" Arg="G"/>
  <Filt Name="IsRcwaGroupOverGFqx" Arg="G"/>
  <Returns>
    <C>true</C> if <A>G</A> is an rcwa group,
    an rcwa group over the ring of integers,
    an rcwa group over a semilocalization of the ring of integers or
    an rcwa group over a polynomial ring in one variable over a finite field,
    respectively, and <C>false</C> otherwise.
  </Returns>
  <Description>

    <Index Key="IsRcwaGroupOverZOrZ_pi">
      <C>IsRcwaGroupOverZOrZ&uscore;pi</C>
    </Index>

    Often the same methods can be used for rcwa groups over the ring of
    integers and over its semilocalizations. For this reason there is
    a category <C>IsRcwaGroupOverZOrZ&uscore;pi</C> which is the union of
    <C>IsRcwaGroupOverZ</C> and <C>IsRcwaGroupOverZ&uscore;pi</C>. <P/>

    <Index Key="IsNaturalRCWA"><C>IsNaturalRCWA</C></Index>
    <Index Key="IsNaturalCT"><C>IsNaturalCT</C></Index>

    To allow distinguishing the groups RCWA(<M>R</M>) and CT(<M>R</M>) from
    others, they have the characteristic property <C>IsNaturalRCWA</C> or
    <C>IsNaturalCT</C>, respectively.

  </Description>
</ManSection>

</Section>

<!-- #################################################################### -->

</Chapter>

<!-- #################################################################### -->