Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 5e1854624d3bc613bdd0dd13d1ef9ac7 > files > 2871

gap-system-4.4.12-5mdv2010.0.i586.rpm

<!-- #################################################################### -->
<!-- ##                                                                ## -->
<!-- ##  rcwamap.xml          RCWA documentation          Stefan Kohl  ## -->
<!-- ##                                                                ## -->
<!-- ##  $Id: rcwamap.xml,v 1.201 2007/09/26 14:16:45 stefan Exp $     ## -->
<!-- ##                                                                ## -->
<!-- #################################################################### -->

<Chapter Label="ch:RcwaMappings">
<Heading>Residue-Class-Wise Affine Mappings</Heading>

<Ignore Remark="set screen width to 75, for the example tester">
<Example>
<![CDATA[
gap> SizeScreen([75,24]);;
]]>
</Example>
</Ignore>

In this chapter we give the basic definitions, and describe how to enter
residue-class-wise affine mappings and how to compute with them. <P/>

How to compute with residue-class-wise affine groups is described in detail
in the next chapter. The reader is encouraged to look there already after
having read the first few pages of this chapter, and to look up definitions
as he needs to.

<!-- #################################################################### -->

<Section Label="sec:basicdefinitions">
<Heading>Basic definitions</Heading>

<Index Key="rcwa mapping" Subkey="definition">rcwa mapping</Index>
<Index Key="rcwa group" Subkey="definition">rcwa group</Index>

Residue-class-wise affine groups, or <E>rcwa</E> groups for short, are
permutation groups whose elements are bijective residue-class-wise affine
mappings. <P/>

A mapping <M>f: \mathbb{Z} \rightarrow \mathbb{Z}</M> is called
<E>residue-class-wise affine</E>, or for short an <E>rcwa</E> mapping,
if there is a positive integer&nbsp;<M>m</M> such that the restrictions
of&nbsp;<M>f</M> to the residue classes
<M>r(m) \in \mathbb{Z}/m\mathbb{Z}</M> are all affine,
i.e. given&nbsp;by
<Alt Only="LaTeX">
  <Display>
    f|_{r(m)}: \ r(m) \rightarrow \mathbb{Z}, \ \ \
    n \ \mapsto \ \frac{a_{r(m)} \cdot n + b_{r(m)}}{c_{r(m)}}
  </Display>
</Alt>
<Alt Only="HTML"><![CDATA[<center>
  <img src = "rcwamap.png" width = "366" height = "49"
       alt = "f|_r(m): n |-> (a_r(m) * n + b_r(m)) / c_r(m)" />
</center>]]></Alt>
<Alt Only="Text"><Verb>
                                        a_r(m) * n + b_r(m)
           f|_r(m):  r(m) -> Z,  n |->  -------------------
                                              c_r(m)
</Verb></Alt>
for certain coefficients <M>a_{r(m)}, b_{r(m)}, c_{r(m)} \in \mathbb{Z}</M>
depending on&nbsp;<M>r(m)</M>.

<Index Key="modulus" Subkey="definition">modulus</Index>
<Index Key="rcwa mapping" Subkey="modulus">rcwa mapping</Index>
<Index Key="multiplier" Subkey="definition">multiplier</Index>
<Index Key="rcwa mapping" Subkey="multiplier">rcwa mapping</Index>
<Index Key="divisor" Subkey="definition">divisor</Index>
<Index Key="rcwa mapping" Subkey="divisor">rcwa mapping</Index>

The smallest possible <M>m</M> is called the <E>modulus</E>
of&nbsp;<M>f</M>. It is understood that all fractions are reduced,
i.e. that <M>\gcd( a_{r(m)}, b_{r(m)}, c_{r(m)} ) = 1</M>, and that
<M>c_{r(m)} &gt; 0</M>. The lcm of the coefficients <M>a_{r(m)}</M>
is called the <E>multiplier</E> of&nbsp;<M>f</M>, and the lcm of the
coefficients <M>c_{r(m)}</M> is called the <E>divisor</E>
of&nbsp;<M>f</M>. <P/>

It is easy to see that the residue-class-wise affine mappings
of&nbsp;<M>\mathbb{Z}</M> form a monoid under composition, and that the
residue-class-wise affine permutations of&nbsp;<M>\mathbb{Z}</M> form
a countable subgroup of Sym(<M>\mathbb{Z}</M>). We denote the former
by Rcwa(<M>\mathbb{Z}</M>), and the latter by RCWA(<M>\mathbb{Z}</M>). <P/>

<Index Key="tame" Subkey="rcwa mapping">tame</Index>
<Index Key="tame" Subkey="rcwa group">tame</Index>
<Index Key="wild" Subkey="rcwa mapping">wild</Index>
<Index Key="wild" Subkey="rcwa group">wild</Index>
<Index Key="rcwa mapping" Subkey="tame">rcwa mapping</Index>
<Index Key="rcwa group" Subkey="tame">rcwa group</Index>
<Index Key="rcwa mapping" Subkey="wild">rcwa mapping</Index>
<Index Key="rcwa group" Subkey="wild">rcwa group</Index>

An rcwa mapping is called <E>tame</E> if the set of moduli of its powers
is bounded, or equivalently if it permutes a partition
of&nbsp;<M>\mathbb{Z}</M> into finitely many residue classes on all of which
it is affine. An rcwa group is called <E>tame</E> if there is a common such
partition for all of its elements, or equivalently if the set of moduli of
its elements is bounded. Rcwa mappings and -groups which are not tame
are called <E>wild</E>. Tame rcwa mappings and -groups are something which
one could call the <Q>trivial cases</Q> or <Q>basic building blocks</Q>,
while wild rcwa groups are the objects of primary interest. <P/>

The definitions of residue-class-wise affine mappings and -groups
can be generalized in an obvious way to suitable rings other
than&nbsp;<M>\mathbb{Z}</M>.
In fact, this package provides also some support for residue-class-wise
affine groups over semilocalizations of&nbsp;<M>\mathbb{Z}</M> and over
univariate polynomial rings over finite fields. The former of these rings
have been chosen as examples of rings with only finitely prime elements,
and the latter have been chosen as examples of rings with nonzero
characteristic.

</Section>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

<!-- #################################################################### -->

<Section Label="sec:EnteringRcwaMappings">
<Heading>Entering residue-class-wise affine mappings</Heading>

Entering an rcwa mapping of&nbsp;<M>\mathbb{Z}</M> requires giving
the modulus&nbsp;<M>m</M> and the coefficients <M>a_{r(m)}</M>,
<M>b_{r(m)}</M> and&nbsp;<M>c_{r(m)}</M> for <M>r(m)</M> running over the
residue classes (mod&nbsp;<M>m</M>). <P/>

This can be done easiest by <C>RcwaMapping( <A>coeffs</A> )</C>, where
<A>coeffs</A> is a list of <M>m</M> coefficient triples
<C>coeffs[</C><M>r+1</M><C>]&nbsp;= [</C><M>a_{r(m)}</M>, <M>b_{r(m)}</M>,
<M>c_{r(m)}</M><C>]</C>, with <M>r</M> running from 0 to&nbsp;<M>m-1</M>.
<P/>

If some coefficient <M>c_{r(m)}</M> is zero or if images of some integers
under the mapping to be defined would not be integers, an error message is
printed and a break loop is entered. For example, the coefficient triple
<C>[1,4,3]</C> is not allowed at the first position.
The reason for this is that not all integers congruent to
<M>1 \cdot 0 + 4 = 4</M>&nbsp;mod&nbsp;<M>m</M>
are divisible by&nbsp;3. <P/>

For the general constructor for rcwa mappings, see
<Ref Meth="RcwaMapping" Label="by ring, modulus and list of coefficients"/>.

<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]); # The Collatz mapping.
<rcwa mapping of Z with modulus 2>
gap> [ IsSurjective(T), IsInjective(T) ];
[ true, false ]
gap> SetName(T,"T"); Display(T);

Surjective rcwa mapping of Z with modulus 2

              n mod 2               |                n^T
------------------------------------+------------------------------------
  0                                 | n/2
  1                                 | (3n + 1)/2

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]); SetName(a,"a");
<rcwa mapping of Z with modulus 3>
gap> IsBijective(a);
true
gap> Display(a); # This is Collatz' permutation:

Bijective rcwa mapping of Z with modulus 3

              n mod 3               |                n^a
------------------------------------+------------------------------------
  0                                 | 2n/3
  1                                 | (4n - 1)/3
  2                                 | (4n + 1)/3

gap> Support(a);
Z \ [ -1, 0, 1 ]
gap> Cycle(a,44);
[ 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66 ]
]]>
</Example>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

<Alt Only="LaTeX">\noindent</Alt>
There is computational evidence for the conjecture that any
residue-class-wise affine permutation of&nbsp;<M>\mathbb{Z}</M> can be
factored into members of the following three series of permutations of
particularly simple structure
(cf. <Ref Attr="FactorizationIntoCSCRCT"
          Label="for an rcwa permutation of Z"/>):

<ManSection>
  <Func Name="ClassShift" Arg="r, m" Label="r, m"/>
  <Func Name="ClassShift" Arg="cl" Label="cl"/>
  <Returns> The class shift <M>\nu_{r(m)}</M>. </Returns>
  <Description>
    The <E>class shift</E> <M>\nu_{r(m)}</M> is the rcwa mapping
    of&nbsp;<M>\mathbb{Z}</M> which maps <M>n \in r(m)</M> to <M>n + m</M>
    and which fixes <M>\mathbb{Z} \setminus r(m)</M> pointwise. <P/>

    In the one-argument form, the argument&nbsp;<A>cl</A> stands for the
    residue class&nbsp;<M>r(m)</M>. Enclosing the argument list in list
    brackets is permitted.
<Example>
<![CDATA[
gap> Display(ClassShift(5,12));

Tame bijective rcwa mapping of Z with modulus 12, of order infinity

              n mod 12              |         n^ClassShift(5,12)
------------------------------------+------------------------------------
   0  1  2  3  4  6  7  8  9 10 11  | n
   5                                | n + 12

]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Func Name="ClassReflection" Arg="r, m" Label="r, m"/>
  <Func Name="ClassReflection" Arg="cl" Label="cl"/>
  <Returns> The class reflection <M>\varsigma_{r(m)}</M>. </Returns>
  <Description>
    The <E>class reflection</E> <M>\varsigma_{r(m)}</M> is the rcwa mapping
    of&nbsp;<M>\mathbb{Z}</M> which maps <M>n \in r(m)</M> to <M>-n + 2r</M>
    and which fixes <M>\mathbb{Z} \setminus r(m)</M> pointwise,
    where it is understood that <M>0 \leq r &lt; m</M>. <P/>

    In the one-argument form, the argument&nbsp;<A>cl</A> stands for the
    residue class&nbsp;<M>r(m)</M>. Enclosing the argument list in list
    brackets is permitted.
<Example>
<![CDATA[
gap> Display(ClassReflection(5,9));

Bijective rcwa mapping of Z with modulus 9, of order 2

              n mod 9               |       n^ClassReflection(5,9)
------------------------------------+------------------------------------
  0 1 2 3 4 6 7 8                   | n
  5                                 | -n + 10

]]>
</Example>
  </Description>
</ManSection>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

<ManSection>
  <Func Name="ClassTransposition" Arg="r1, m1, r2, m2"
                                  Label="r1, m1, r2, m2"/>
  <Func Name="ClassTransposition" Arg="cl1, cl2"
                                  Label="cl1, cl2"/>
  <Returns>
    The class transposition <M>\tau_{r_1(m_1),r_2(m_2)}</M>.
  </Returns>
  <Description>
    Given two disjoint residue classes <M>r_1(m_1)</M> and <M>r_2(m_2)</M>
    of the integers, the <E>class transposition</E>
    <M>\tau_{r_1(m_1),r_2(m_2)}</M> <M>\in</M> RCWA(<M>\mathbb{Z}</M>)
    is defined as the involution which interchanges <M>r_1+km_1</M> and
    <M>r_2+km_2</M> for any integer&nbsp;<M>k</M> and which fixes all other
    points.
    It is understood that <M>m_1</M> and&nbsp;<M>m_2</M> are positive,
    that <M>0 \leq r_1 &lt; m_1</M> and that <M>0 \leq r_2 &lt; m_2</M>.
    For a <E>generalized class transposition</E>, the latter assumptions
    are not made. <P/>

    The class transposition <M>\tau_{r_1(m_1),r_2(m_2)}</M> interchanges
    the residue classes <M>r_1(m_1)</M> and <M>r_2(m_2)</M> and fixes the
    complement of their union pointwise. <P/>

    <Index Key="TransposedClasses" Subkey="of a class transposition">
      <C>TransposedClasses</C>
    </Index>

    In the four-argument form, the arguments <A>r1</A>, <A>m1</A>, <A>r2</A>
    and&nbsp;<A>m2</A> stand for <M>r_1</M>, <M>m_1</M>, <M>r_2</M>
    and&nbsp;<M>m_2</M>, respectively.
    In the two-argument form, the arguments <A>cl1</A> and&nbsp;<A>cl2</A>
    stand for the residue classes <M>r_1(m_1)</M> and&nbsp;<M>r_2(m_2)</M>,
    respectively. Enclosing the argument list in list brackets is permitted.
    The residue classes <M>r_1(m_1)</M> and <M>r_2(m_2)</M> are stored
    as an attribute <C>TransposedClasses</C>. <P/>

    <Index Key="SplittedClassTransposition"
           Subkey="for a class transposition and a number of factors">
      <C>SplittedClassTransposition</C>
    </Index>

    A class transposition can be written as a product of any given number
    <M>k</M> of class transpositions. Such a decomposition can be obtained
    by <C>SplittedClassTransposition(<A>ct</A>,<A>k</A>)</C>. <P/>
<Example>
<![CDATA[
gap> Display(ClassTransposition(1,2,8,10));

Bijective rcwa mapping of Z with modulus 10, of order 2

              n mod 10              |   n^ClassTransposition(1,2,8,10)
------------------------------------+------------------------------------
   0  2  4  6                       | n
   1  3  5  7  9                    | 5n + 3
   8                                | (n - 3)/5

]]>
</Example>
  </Description>
</ManSection>

<Alt Only="LaTeX">\noindent</Alt>
The set of all class transpositions of the ring of integers
generates the simple group CT(<M>\mathbb{Z}</M>) mentioned
in Chapter&nbsp;<Ref Label="ch:AboutRCWA"/>.
This group has a representation as a &GAP; object -- see&nbsp;<Ref Func="CT"
Label="the group generated by all class transpositions of a ring"/>.
The set of all generalized class transpositions of&nbsp;<M>\mathbb{Z}</M>
generates a simple group as well, cf.&nbsp;<Cite Key="Kohl06b"/>. <P/>

Class shifts, class reflections and class transpositions of rings
<M>R</M> other than <M>\mathbb{Z}</M> are defined in an entirely analogous
way -- all one needs to do is to replace <M>\mathbb{Z}</M> by&nbsp;<M>R</M>
and to read <M>&lt;</M> and <M>\leq</M> in the sense of the ordering used
by&nbsp;&GAP;.
They can also be entered basically as described above -- just prepend
the desired ring&nbsp;<M>R</M> to the argument list. Often also a sensible
<Q>default ring</Q> (<M>\rightarrow</M> <C>DefaultRing</C> in the &GAP;
Reference Manual) is chosen if that optional first argument is omitted. <P/>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

On rings which have more than two units, there is another basic series
of rcwa permutations which generalizes class reflections:

<ManSection>
  <Func Name="ClassRotation" Arg="r, m, u" Label="r, m, u"/>
  <Func Name="ClassRotation" Arg="cl, u" Label="cl, u"/>
  <Returns> The class rotation <M>\rho_{r(m),u}</M>. </Returns>
  <Description>
    Given a residue class <M>r(m)</M> and a unit&nbsp;<M>u</M> of a suitable
    ring&nbsp;<M>R</M>, the <E>class rotation</E> <M>\rho_{r(m),u}</M>
    is the rcwa mapping which maps <M>n \in r(m)</M> to <M>un + (1-u)r</M>
    and which fixes <M>R \setminus r(m)</M> pointwise.
    Class rotations generalize class reflections, as we have
    <M>\rho_{r(m),-1} = \varsigma_{r(m)}</M>. <P/>

    <Index Key="RotationFactor" Subkey="of a class rotation">
      <C>RotationFactor</C>
    </Index>

    In the two-argument form, the argument&nbsp;<A>cl</A> stands for the
    residue class&nbsp;<M>r(m)</M>. Enclosing the argument list in list
    brackets is permitted. The argument <A>u</A> is stored as an attribute
    <C>RotationFactor</C>.
<Example>
<![CDATA[
gap> Display(ClassRotation(ResidueClass(Z_pi(2),2,1),1/3));

Tame bijective rcwa mapping of Z_( 2 ) with modulus 2, of order infinity

              n mod 2               |      n^ClassRotation(1,2,1/3)
------------------------------------+------------------------------------
  0                                 | n
  1                                 | 1/3 n + 2/3

gap> x := Indeterminate(GF(8),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(8),1);;
gap> Display(ClassRotation(1,x,Z(8)*One(R)));

Bijective rcwa mapping of GF(2^3)[x] with modulus x, of order 7

        P mod x         |       P^(ClassRotation(Z(2)^0,x,Z(2^3)))
------------------------+------------------------------------------------
 0*Z(2)   Z(2^3)        |
 Z(2^3)^2 Z(2^3)^3      |
 Z(2^3)^4 Z(2^3)^5      |
 Z(2^3)^6               | P
 Z(2)^0                 | Z(2^3)*P + Z(2^3)^3

]]>
</Example>
  </Description>
</ManSection>

<Index Key="IsClassShift" Subkey="for an rcwa mapping">
  <C>IsClassShift</C>
</Index>
<Index Key="IsClassReflection" Subkey="for an rcwa mapping">
  <C>IsClassReflection</C>
</Index>
<Index Key="IsClassRotation" Subkey="for an rcwa mapping">
  <C>IsClassRotation</C>
</Index>
<Index Key="IsClassTransposition" Subkey="for an rcwa mapping">
  <C>IsClassTransposition</C>
</Index>
<Index Key="IsGeneralizedClassTransposition" Subkey="for an rcwa mapping">
  <C>IsGeneralizedClassTransposition</C>
</Index>

There are properties <C>IsClassShift</C>, <C>IsClassReflection</C>,
<C>IsClassRotation</C>, <C>IsClassTransposition</C> and
<C>IsGeneralizedClassTransposition</C>, which indicate whether a given
rcwa mapping belongs to the corresponding series.

<Index Key="Name" Subkey="for cs / cr / ct"><C>Name</C></Index>

By default, class shifts, class reflections, class transpositions and class
rotations are given descriptive names of the form <C>Class...(...)</C>. They
can be given user-defined names upon creation via the option <C>Name</C>.
Setting the <C>Name</C> attribute can be avoided by passing the empty string.
<P/>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

In the sequel, a description of the general-purpose constructor for rcwa
mappings is given. This might look a bit technical on a first glance,
but knowing all possible ways of entering an rcwa mapping is by no means
necessary for understanding this manual or for using this package.

<ManSection>
  <Heading> RcwaMapping (the general constructor) </Heading>
  <Meth Name="RcwaMapping" Arg="R, m, coeffs"
        Label="by ring, modulus and list of coefficients"/>
  <Meth Name="RcwaMapping" Arg="R, coeffs"
        Label="by ring and list of coefficients"/>
  <Meth Name="RcwaMapping" Arg="coeffs"
        Label="by list of coefficients"/>
  <Meth Name="RcwaMapping" Arg="perm, range"
        Label="by permutation and range"/>
  <Meth Name="RcwaMapping" Arg="m, values"
        Label="by modulus and list of values"/>
  <Meth Name="RcwaMapping" Arg="pi, coeffs"
        Label="by set of noninvertible primes and list of coefficients"/>
  <Meth Name="RcwaMapping" Arg="q, m, coeffs"
        Label="by finite field size, modulus and list of coefficients"/>
  <Meth Name="RcwaMapping" Arg="P1, P2"
        Label="by two partitions of a ring into residue classes"/>
  <Meth Name="RcwaMapping" Arg="cycles"
        Label="by residue class cycles"/>
  <Returns> An rcwa mapping. </Returns>
  <Description>
    In all cases the argument&nbsp;<A>R</A> is the underlying ring,
    <A>m</A> is the modulus and <A>coeffs</A> is the coefficient list.
    A coefficient list for an rcwa mapping with modulus <M>m</M> consists of
    <M>|R/mR|</M> coefficient triples
    <C>[</C><M>a_{r(m)}</M>, <M>b_{r(m)}</M>, <M>c_{r(m)}</M><C>]</C>.
    Their ordering is determined by the ordering of the representatives of
    the residue classes (mod&nbsp;<M>m</M>) in the sorted list returned by
    <C>AllResidues(<A>R</A>, <A>m</A>)</C>. In case <M>R = \mathbb{Z}</M>
    this means that the coefficient triple for the residue class <M>0(m)</M>
    comes first and is followed by the one for <M>1(m)</M>, the one for
    <M>2(m)</M> and so on. <P/>

    In case one or several of the arguments <A>R</A>, <A>m</A> and
    <A>coeffs</A> are omitted or replaced by other arguments, the former
    are either derived from the latter or default values are taken.
    The meaning of the other arguments is defined in the detailed
    description of the particular methods given in the sequel:

    The above methods return the rcwa mapping
    <List>
      <Mark>(a)</Mark>
      <Item>
        of <A>R</A> with modulus <A>m</A> and coefficients
        <A>coeffs</A>,
      </Item>
      <Mark>(b)</Mark>
      <Item>
        of <A>R</A> = <M>\mathbb{Z}</M> or <A>R</A> =
        <M>\mathbb{Z}_{(\pi)}</M> with modulus <C>Length(<A>coeffs</A>)</C>
        and coefficients <A>coeffs</A>,
      </Item>
      <Mark>(c)</Mark>
      <Item>
        of <A>R</A> = <M>\mathbb{Z}</M> with modulus
        <C>Length(<A>coeffs</A>)</C> and coefficients <A>coeffs</A>,
      </Item>
      <Mark>(d)</Mark>
      <Item>
        of <A>R</A> = <M>\mathbb{Z}</M>, permuting any set
        <C><A>range</A>+k*Length(<A>range</A>)</C> like <A>perm</A>
        permutes <A>range</A>,
      </Item>
      <Mark>(e)</Mark>
      <Item>
        of <A>R</A> = <M>\mathbb{Z}</M> with modulus <A>m</A> and
        values given by a list <A>val</A> of 2 pairs <C>[</C>preimage<C>,
        </C>image<C>]</C> per residue class (mod <A>m</A>),
      </Item>
      <Mark>(f)</Mark>
      <Item>
        of <A>R</A> = <M>\mathbb{Z}_{(\pi)}</M> with modulus
        <C>Length(<A>coeffs</A>)</C> and coefficients <A>coeffs</A>
        (the set of primes <M>\pi</M> which denotes the underlying ring is
        passed as argument <A>pi</A>),
      </Item>
      <Mark>(g)</Mark>
      <Item>
        of <A>R</A> = GF(<A>q</A>)[<A>x</A>] with modulus
        <A>m</A> and coefficients <A>coeffs</A>,
      </Item>
      <Mark>(h)</Mark>
      <Item>
        a bijective rcwa mapping which induces a bijection between
        the partitions <A>P1</A> and <A>P2</A> of&nbsp;<A>R</A> into residue
        classes and which is affine on the elements of <A>P1</A>, or
      </Item>
      <Mark>(i)</Mark>
      <Item>
        a bijective rcwa mapping with <Q>residue class cycles</Q> given
        by a list <A>cycles</A> of lists of pairwise disjoint residue classes
        which are to be permuted cyclically, each, respectively.
      </Item>
    </List>
    The methods for the operation <C>RcwaMapping</C> perform a number of
    argument checks, which can be skipped by using <C>RcwaMappingNC</C>
    instead.
<Example>
<![CDATA[
gap> R := PolynomialRing(GF(2),1);; x := X(GF(2),1);; SetName(x,"x");
gap> RcwaMapping(R,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R));     # (a)
<rcwa mapping of GF(2)[x] with modulus x+Z(2)^0>
gap> RcwaMapping(Z_pi(2),[[1/3,0,1]]);                              # (b)
Rcwa mapping of Z_( 2 ): n -> 1/3 n
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);                  # (c)
<rcwa mapping of Z with modulus 3>
gap> RcwaMapping((1,2,3),[1..4]);                                   # (d)
<bijective rcwa mapping of Z with modulus 4, of order 3>
gap> T = RcwaMapping(2,[[1,2],[2,1],[3,5],[4,2]]);                  # (e)
true
gap> RcwaMapping([2],[[1/3,0,1]]);                                  # (f)
Rcwa mapping of Z_( 2 ): n -> 1/3 n
gap> RcwaMapping(2,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R));     # (g)
<rcwa mapping of GF(2)[x] with modulus x+Z(2)^0>
gap> a = RcwaMapping(List([[0,3],[1,3],[2,3]],ResidueClass),
>                    List([[0,2],[1,4],[3,4]],ResidueClass));       # (h)
true
gap> RcwaMapping([List([[0,2],[1,4],[3,8],[7,16]],ResidueClass)]);  # (i)
<bijective rcwa mapping of Z with modulus 16, of order 4>
gap> Cycle(last,ResidueClass(0,2));
[ 0(2), 1(4), 3(8), 7(16) ]
]]>
</Example>
  </Description>
</ManSection>

Rcwa mappings of <M>\mathbb{Z}</M> can be <Q>translated</Q> to rcwa mappings
of some semilocalization <M>\mathbb{Z}_{(\pi)}</M> of&nbsp;<M>\mathbb{Z}</M>:

<ManSection>
  <Func Name="LocalizedRcwaMapping"
        Arg="f, p" Label="for an rcwa mapping of Z and a prime"/>
  <Func Name="SemilocalizedRcwaMapping"
        Arg="f, pi" Label="for an rcwa mapping of Z and a set of primes"/>
  <Returns>
    The rcwa mapping of <M>\mathbb{Z}_{(p)}</M> respectively
    <M>\mathbb{Z}_{(\pi)}</M> with the same coefficients as the rcwa mapping
    <A>f</A> of&nbsp;<M>\mathbb{Z}</M>.
  </Returns>
  <Description>
    The argument <A>p</A> or <A>pi</A> must be a prime or a set of primes,
    respectively. The argument&nbsp;<A>f</A> must be an rcwa mapping
    of&nbsp;<M>\mathbb{Z}</M> whose modulus is a power of&nbsp;<A>p</A>,
    or whose modulus has only prime divisors which lie in&nbsp;<A>pi</A>,
    respectively.
<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Cycle(LocalizedRcwaMapping(T,2),131/13);
[ 131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13, 
  419/13, 635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13, 
  1231/13, 1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13 ]
]]>
</Example>
  </Description>
</ManSection>

<Index Key="View" Subkey="for an rcwa mapping"><C>View</C></Index>
<Index Key="Display" Subkey="for an rcwa mapping"><C>Display</C></Index>
<Index Key="Print" Subkey="for an rcwa mapping"><C>Print</C></Index>
<Index Key="String" Subkey="for an rcwa mapping"><C>String</C></Index>

<Alt Only="LaTeX">\noindent</Alt>
Rcwa mappings can be <C>View</C>ed, <C>Display</C>ed, <C>Print</C>ed and
written to a <C>String</C>. The output of the <C>View</C> method is kept
reasonably short. In most cases it does not describe an rcwa mapping
completely. In these cases the output is enclosed in brackets. The output
of the methods for <C>Display</C> and <C>Print</C> describe an rcwa mapping
in full. The <C>Print</C>ed representation of an rcwa mapping is &GAP; -
readable if and only if the <C>Print</C>ed representation of the elements
of the underlying ring is so. <P/>

<Index Key="LaTeX" Subkey="for an rcwa mapping"><C>LaTeX</C></Index>
<Index Key="LaTeXObj" Subkey="for an rcwa mapping"><C>LaTeXObj</C></Index>

There is also a method for <C>LaTeX</C>, respectively <C>LaTeXObj</C>.
The output of this method makes use of the &LaTeX; macro package
<Package>amsmath</Package>. If the option <A>Factorization</A> is set
and the argument is bijective, a factorization into class shifts,
class reflections, class transpositions and prime switches is printed
(cf. <Ref Attr="FactorizationIntoCSCRCT"
          Label="for an rcwa permutation of Z"/>).
For rcwa mappings with modulus greater than&nbsp;1, an indentation by
<A>Indentation</A> characters can be obtained by setting this option
value accor\-dingly.

<Example>
<![CDATA[
gap> Print(LaTeXObj(T));
n \ \longmapsto \
\begin{cases}
  n/2        & \text{if} \ n \in 0(2), \\
  (3n + 1)/2 & \text{if} \ n \in 1(2).
\end{cases}
]]>
</Example>

<Index Key="LaTeXAndXDVI" Subkey="for an rcwa mapping">
  <C>LaTeXAndXDVI</C>
</Index>

There is an operation <C>LaTeXAndXDVI</C> which displays an rcwa mapping
in an <Package>xdvi</Package> window.
This works as follows: The string returned by the <C>LaTeXObj</C> - method
described above is inserted into a &LaTeX; template file. This file is
&LaTeX;'ed, and the result is shown with <Package>xdvi</Package>.
Calling <C>Display</C> with option <A>xdvi</A> has the same effect.
The operation <C>LaTeXAndXDVI</C> is only available on UNIX systems,
and requires suitable installations of &LaTeX; and <Package>xdvi</Package>.

</Section>

<!-- #################################################################### -->

<Section Label="sec:BasicArithmeticForRcwaMappings">
<Heading>Basic arithmetic for residue-class-wise affine mappings</Heading>

<Index Key="rcwa mapping" Subkey="arithmetic operations">rcwa mapping</Index>
<Index Key="Order" Subkey="of an rcwa permutation"><C>Order</C></Index>
<Index Key="IsTame" Subkey="for an rcwa mapping"><C>IsTame</C></Index> <P/>

Testing rcwa mappings for equality requires only comparing their
coefficient lists, hence is cheap.
Rcwa mappings can be multiplied, thus there is a method for <C>*</C>.
Bijective rcwa mappings can also be inverted, thus there is a method for
<C>Inverse</C>. The latter method is usually accessed by raising a mapping
to a power with negative exponent. Multiplying, inverting and computing
powers of tame rcwa mappings is cheap. Computing powers of wild mappings
is usually expensive -- runtime and memory requirements normally grow
approximately exponentially with the exponent. How expensive multiplying
a couple of wild mappings is, varies very much. In any case, the amount of
memory required for storing an rcwa mapping is proportional to its modulus.
Whether a given mapping is tame or wild can be determined by the operation
<C>IsTame</C>. There is a method for <C>Order</C>, which can not only
compute a finite order, but which can also detect infinite order.

<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;          # The Collatz mapping.
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz' permutation.
gap> List([-4..4],k->Modulus(a^k));
[ 256, 64, 16, 4, 1, 3, 9, 27, 81 ]
gap> IsTame(T) or IsTame(a);
false
gap> IsTame(ClassShift(0,1)) and IsTame(ClassTransposition(0,2,1,2));
true
gap> T^2*a*T*a^-3;
<rcwa mapping of Z with modulus 768>
gap> (ClassShift(1,3)*ClassReflection(2,7))^1000000;
<bijective rcwa mapping of Z with modulus 21>
]]>
</Example>

<Index Key="IsInjective" Subkey="for an rcwa mapping">
  <C>IsInjective</C>
</Index>
<Index Key="IsSurjective" Subkey="for an rcwa mapping">
  <C>IsSurjective</C>
</Index>
<Index Key="IsBijective" Subkey="for an rcwa mapping">
  <C>IsBijective</C>
</Index>
<Index Key="Image" Subkey="of an rcwa mapping">
  <C>Image</C>
</Index>

There are methods installed for <C>IsInjective</C>, <C>IsSurjective</C>,
<C>IsBijective</C> and <C>Image</C>.

<Example>
<![CDATA[
gap> [ IsInjective(T), IsSurjective(T), IsBijective(a) ];
[ false, true, true ]
gap> Image(RcwaMapping([[2,0,1]]));
0(2)
]]>
</Example>

<Index Key="rcwa mapping" Subkey="images under">rcwa mapping</Index>

Images of elements, of finite sets of elements and of unions of finitely
many residue classes of the source of an rcwa mapping can be computed with
<C>&circum;</C>, the same symbol as used for exponentiation and conjugation.
The same works for partitions of the source into a finite number of
residue classes.

<Example>
<![CDATA[
gap> 15^T;
23
gap> ResidueClass(1,2)^T;
2(3)
gap> List([[0,3],[1,3],[2,3]],ResidueClass)^a;
[ 0(2), 1(4), 3(4) ]
]]>
</Example>

<Index Key="PreImageElm" Subkey="of a ring element under an rcwa mapping">
  <C>PreImageElm</C>
</Index>
<Index Key="PreImagesElm" Subkey="of a ring element under an rcwa mapping">
  <C>PreImagesElm</C>
</Index>
<Index Key="PreImage"
       Subkey="of a set of ring elements under an rcwa mapping">
  <C>PreImage</C>
</Index>
<Index Key="PreImage"
       Subkey="of a residue class union under an rcwa mapping">
  <C>PreImage</C>
</Index>

For computing preimages of elements under rcwa mappings,
there are methods for <C>PreImageElm</C> and <C>PreImagesElm</C>.
The preimage of a finite set of ring elements or of a union of finitely
many residue classes under an rcwa mapping can be computed by
<C>PreImage</C>.

<Example>
<![CDATA[
gap> PreImagesElm(T,8);
[ 5, 16 ]
gap> PreImage(T,ResidueClass(Integers,3,2));
Z \ 0(6) U 2(6)
gap> M := [1];; l := [1];;
gap> while Length(M) < 5000 do M := PreImage(T,M); Add(l,Length(M)); od; l;
[ 1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208, 
  277, 367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458 ]
]]>
</Example>

<Index Key="Support" Subkey="of an rcwa mapping">
  <C>Support</C>
</Index>
<Index Key="MovedPoints" Subkey="of an rcwa mapping">
  <C>MovedPoints</C>
</Index>
<Index Key="RestrictedPerm"
       Subkey="for an rcwa permutation and a residue class union">
  <C>RestrictedPerm</C>
</Index>

There is a method for the operation <C>Support</C> for computing the
support of an rcwa mapping. A synonym for <C>Support</C> is
<C>MovedPoints</C>. There is also a method for <C>RestrictedPerm</C>
for computing the restriction of a bijective rcwa mapping to a union
of residue classes which it fixes setwise.

<Example>
<![CDATA[
gap> List([a,a^2],Support);
[ Z \ [ -1, 0, 1 ], Z \ [ -3, -2, -1, 0, 1, 2, 3 ] ]
gap> RestrictedPerm(ClassShift(0,2)*ClassReflection(1,2),
>                   ResidueClass(0,2));
<rcwa mapping of Z with modulus 2>
gap> last = ClassShift(0,2);
true
]]>
</Example>

Rcwa mappings can be added and subtracted pointwise. However, please note
that the set of rcwa mappings of a ring does not form a ring under
<C>+</C> and <C>*</C>. <P/>

<Example>
<![CDATA[
gap> b := ClassShift(0,3) * a;;
gap> [ Image((a + b)), Image((a - b)) ];
[ 2(4), [ -2, 0 ] ]
]]>
</Example>

<Index Key="Modulus" Subkey="of an rcwa mapping"><C>Modulus</C></Index>
<Index Key="Mod" Subkey="for an rcwa mapping"><C>Mod</C></Index>
<Index Key="Coefficients" Subkey="of an rcwa mapping">
  <C>Coefficients</C>
</Index>
<Index Key="rcwa mapping" Subkey="coercion">rcwa mapping</Index>
<Index Key="rcwa group" Subkey="coercion">rcwa group</Index>

There are operations <C>Modulus</C> (abbreviated <C>Mod</C>) and
<C>Coefficients</C> for retrieving the modulus and the coefficient list
of an rcwa mapping. The meaning of the return values is as described
in Section&nbsp;<Ref Label="sec:EnteringRcwaMappings"/>. <P/>

General documentation for most operations mentioned in this section can
be found in the &GAP; reference manual. For rcwa mappings of rings other
than <M>\mathbb{Z}</M>, not for all operations applicable methods are
available. <P/>

As in general a subring relation <M>R_1&lt;R_2</M> does <E>not</E> give
rise to a natural embedding of RCWA(<M>R_1</M>) into RCWA(<M>R_2</M>),
there is no coercion between rcwa mappings or rcwa groups over different
rings.

</Section>

<!-- #################################################################### -->

<Section Label="sec:AttributesAndPropertiesOfRcwaMappings">
<Heading>
  Attributes and properties of residue-class-wise affine mappings
</Heading>

<Index Key="Multiplier" Subkey="of an rcwa mapping"><C>Multiplier</C></Index>
<Index Key="Mult" Subkey="for an rcwa mapping"><C>Mult</C></Index>
<Index Key="Divisor" Subkey="of an rcwa mapping"><C>Divisor</C></Index>
<Index Key="Div" Subkey="for an rcwa mapping"><C>Div</C></Index>
<Index Key="PrimeSet" Subkey="of an rcwa mapping"><C>PrimeSet</C></Index>
<Index Key="rcwa mapping" Subkey="prime set">rcwa mapping</Index>
<Index Key="integral" Subkey="definition">integral</Index>
<Index Key="rcwa mapping" Subkey="integral">rcwa mapping</Index>
<Index Key="IsIntegral" Subkey="for an rcwa mapping">
  <C>IsIntegral</C>
</Index>
<Index Key="balanced" Subkey="definition"><C>balanced</C></Index>
<Index Key="rcwa mapping" Subkey="balanced">rcwa mapping</Index>
<Index Key="IsBalanced" Subkey="for an rcwa mapping">
  <C>IsBalanced</C>
</Index>
<Index Key="rcwa mapping"
       Subkey="class-wise order-preserving">rcwa mapping</Index>
<Index Key="IsClassWiseOrderPreserving" Subkey="for an rcwa mapping">
  <C>IsClassWiseOrderPreserving</C>
</Index>
<Index Key="IsSignPreserving" Subkey="for an rcwa mapping">
  <C>IsSignPreserving</C>
</Index>

A number of basic attributes and properties of an rcwa mapping are derived
immediately from the coefficients of its affine partial mappings. This holds
for example for the multiplier and the divisor. These two values are stored
as attributes <C>Multiplier</C> and <C>Divisor</C>, or for short <C>Mult</C>
and <C>Div</C>. The <E>prime set</E> of an rcwa mapping is the set of
prime divisors of the product of its modulus and its multiplier.
It is stored as an attribute <C>PrimeSet</C>.
An rcwa mapping is called <E>integral</E> if its divisor equals&nbsp;1.
An rcwa mapping is called <E>balanced</E> if its multiplier and its divisor
have the same prime divisors. An integral mapping has the property
<C>IsIntegral</C> and a balanced mapping has the property <C>IsBalanced</C>.
An rcwa mapping of the ring of integers or of one of its semilocalizations
is called <E>class-wise order-preserving</E> if and only if all coefficients
<M>a_{r(m)}</M> (cf.&nbsp;Section&nbsp;<Ref Label="sec:basicdefinitions"/>)
in the numerators of the affine partial mappings are positive.
The corresponding property is <C>IsClassWiseOrderPreserving</C>.
An rcwa mapping of <M>\mathbb{Z}</M> is called <E>sign-preserving</E> if
it does not map nonnegative integers to negative integers or vice versa.
The corresponding property is <C>IsSignPreserving</C>. All elements of the
simple group CT(<M>\mathbb{Z}</M>) generated by the set of all class
transpositions are sign-preserving.

<Example>
<![CDATA[
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> IsBijective(u);; Display(u);

Bijective rcwa mapping of Z with modulus 5

              n mod 5               |                n^f
------------------------------------+------------------------------------
  0                                 | 3n/5
  1                                 | (9n + 1)/5
  2                                 | (3n - 1)/5
  3                                 | (9n - 2)/5
  4                                 | (9n + 4)/5

gap> Multiplier(u);
9
gap> Divisor(u);
5
gap> PrimeSet(u);
[ 3, 5 ]
gap> IsIntegral(u) or IsBalanced(u);
false
gap> IsClassWiseOrderPreserving(u) and IsSignPreserving(u);
true
]]>
</Example>

There are a couple of further attributes and operations related to the
affine partial mappings of an rcwa mapping:

<ManSection>
  <Attr Name="LargestSourcesOfAffineMappings"
        Arg="f" Label="for an rcwa mapping"/>
  <Returns>
    The coarsest partition of <C>Source(<A>f</A>)</C> on whose
    elements the rcwa mapping&nbsp;<A>f</A> is affine.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> LargestSourcesOfAffineMappings(ClassShift(3,7));
[ Z \ 3(7), 3(7) ]
gap> LargestSourcesOfAffineMappings(ClassReflection(0,1));
[ Integers ]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> List( [ u, u^-1 ], LargestSourcesOfAffineMappings );
[ [ 0(5), 1(5), 2(5), 3(5), 4(5) ], [ 0(3), 1(3), 2(9), 5(9), 8(9) ] ]
gap> kappa := ClassTransposition(2,4,3,4) * ClassTransposition(4,6,8,12)
>           * ClassTransposition(3,4,4,6);
<bijective rcwa mapping of Z with modulus 12>
gap> LargestSourcesOfAffineMappings(kappa);
[ 2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12) ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="FixedPointsOfAffinePartialMappings"
        Arg="f" Label="for an rcwa mapping"/>
  <Returns>
    A list of the sets of fixed points of the affine partial mappings of
    the rcwa mapping&nbsp;<A>f</A> in the quotient field of its source.
  </Returns>
  <Description>
    The returned list contains entries for the restrictions
    of&nbsp;<A>f</A> to all residue classes modulo <C>Mod(<A>f</A>)</C>.
    A list entry can either be an empty set, the source of&nbsp;<A>f</A>
    or a set of cardinality&nbsp;1. The ordering of the entries corresponds
    to the ordering of the residues in
    <C>AllResidues(Source(<A>f</A>),<A>m</A>)</C>.
<Example>
<![CDATA[
gap> FixedPointsOfAffinePartialMappings(ClassShift(0,2));
[ [  ], Rationals ]
gap> List([1..3],k->FixedPointsOfAffinePartialMappings(T^k));
[ [ [ 0 ], [ -1 ] ], [ [ 0 ], [ 1 ], [ 2 ], [ -1 ] ], 
  [ [ 0 ], [ -7 ], [ 2/5 ], [ -5 ], [ 4/5 ], [ 1/5 ], [ -10 ], [ -1 ] ] ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Oper Name="Multpk" Arg="f, p, k"
        Label="for an rcwa mapping, a prime and an exponent"/>
  <Returns>
    The union of the residue classes <M>r(m)</M> such that
    <M>p^k||a_{r(m)}</M> if <M>k \geq 0</M>, and the union of the residue
    classes <M>r(m)</M> such that <M>p^k||c_{r(m)}</M> if <M>k \leq 0</M>.
    In this context, <M>m</M> denotes the modulus of&nbsp;<A>f</A>, and
    <M>a_{r(m)}</M> and <M>c_{r(m)}</M> denote the coefficients
    of&nbsp;<A>f</A> as introduced in
    Section&nbsp;<Ref Label="sec:basicdefinitions"/>.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> [ Multpk(T,2,-1), Multpk(T,3,1) ];
[ Integers, 1(2) ]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> [ Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1) ];
[ [  ], 0(5) U 2(5), Z \ 0(5) U 2(5), Integers ]
]]>
</Example>
  </Description>
</ManSection>

<Index Key="ClassWiseOrderPreservingOn">
  <C>ClassWiseOrderPreservingOn</C>
</Index>
<Index Key="ClassWiseConstantOn">
  <C>ClassWiseConstantOn</C>
</Index>
<Index Key="ClassWiseOrderReversingOn">
  <C>ClassWiseOrderReversingOn</C>
</Index>

There are attributes <C>ClassWiseOrderPreservingOn</C>,
<C>ClassWiseConstantOn</C> and <C>ClassWiseOrderReversingOn</C> which
store the union of the residue classes (mod&nbsp;<C>Mod(<A>f</A>)</C>) on
which an rcwa mapping&nbsp;<A>f</A> of&nbsp;<M>\mathbb{Z}</M> or of
a semilocalization thereof is class-wise order-preserving, class-wise
constant or class-wise order-reversing, respectively.

<Example>
<![CDATA[
gap> List([ClassTransposition(1,2,0,4),ClassShift(2,3),
>          ClassReflection(2,5)],ClassWiseOrderPreservingOn);
[ Integers, Integers, Z \ 2(5) ]
]]>
</Example>

Finally, there are epimorphisms from the subgroup of RCWA(<M>\mathbb{Z}</M>)
formed by all class-wise order-preserving elements to (<M>\mathbb{Z}</M>,+)
and from RCWA(<M>\mathbb{Z}</M>) itself to the cyclic group of order&nbsp;2,
respectively:

<ManSection>
  <Meth Name="Determinant" Arg="f" Label="of an rcwa mapping of Z"/>
  <Returns>
    The determinant of the rcwa mapping&nbsp;<A>f</A>
    of&nbsp;<M>\mathbb{Z}</M>.
  </Returns>
  <Description>
    The <E>determinant</E> of an affine mapping <M>n \mapsto (an+b)/c</M>
    whose source is a residue class <M>r(m)</M> is defined by <M>b/|a|m</M>.
    This definition is extended additively to determinants of rcwa mappings.
    <P/>

    Let <M>f</M> be an rcwa mapping of the integers, and let
    <M>m</M> denote its modulus. Using the notation
    <M>f|_{r(m)}: n \mapsto (a_{r(m)} \cdot n + b_{r(m)})/c_{r(m)}</M>
    for the affine partial mappings, the <E>determinant</E> det(<M>f</M>)
    of&nbsp;<M>f</M> is given by
    <Alt Only="LaTeX">
      <Display>
        \sum_{r(m) \in \mathbb{Z}/m\mathbb{Z}} b_{r(m)}/(|a_{r(m)}| \cdot m).
      </Display>
    </Alt>
    <Alt Only="HTML"><![CDATA[<center>
      <img src = "det.png" width = "177" height = "58"
           alt = "sum_{r(m) in Z/mZ}
                  b_{r(m)}/(|a_{r(m)}| \cdot m)."/>
    </center>]]></Alt>
    <Alt Only="Text"><Verb>
                          -----
                           \           b_r(m)
                            >     --------------
                           /       |a_{r(m)}| * m
                          -----
                      r(m) in Z/mZ                .
    </Verb></Alt> 
    The determinant mapping is an epimorphism from the group of all
    class-wise order-preserving bijective rcwa mappings of <M>\mathbb{Z}</M>
    to <M>(\mathbb{Z},+)</M>, see&nbsp;<Cite Key="Kohl05"/>,
    Theorem&nbsp;2.11.9.
<Example>
<![CDATA[
gap> List([ClassTransposition(0,4,5,12),ClassShift(3,7)],Determinant);
[ 0, 1 ]
gap> Determinant(ClassTransposition(0,4,5,12)*ClassShift(3,7)^100);   
100
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="Sign" Arg="g" Label="of an rcwa permutation of Z"/>
  <Returns>
    The sign of the bijective rcwa mapping&nbsp;<A>g</A>
    of&nbsp;<M>\mathbb{Z}</M>.
  </Returns>
  <Description>
    Let <M>\sigma</M> be an rcwa permutation of the integers, and let
    <M>m</M> denote its modulus. Using the notation
    <M>\sigma|_{r(m)}: n \mapsto (a_{r(m)} \cdot n + b_{r(m)})/c_{r(m)}</M>
    for the affine partial mappings, the <E>sign</E> of&nbsp;<M>\sigma</M>
    is defined by
    <Alt Only="LaTeX">
      <Display>
        (-1)^{\displaystyle{{\rm det}(\sigma)
            + \sum_{r(m): \ a_{r(m)} &lt; 0} \frac{m - 2r}{m}}}.
      </Display>
    </Alt>
    <Alt Only="HTML"><![CDATA[<center>
      <img src = "sgn.png" width = "284" height = "63"
           alt = "(-1)^(det(sigma)
                      + sum_{r(m): \ a_{r(m)} &lt; 0} (m - 2r)/m)."/>
    </center>]]></Alt>
    <Alt Only="Text"><Verb>
                                    -----
                                     \       m - 2r
                      det(sigma) +    >      -------
                                     /          m
                                    -----
                                 a_r(m) &lt; 0
              (-1)                                   .
    </Verb></Alt> 
    The sign mapping is an epimorphism from RCWA(<M>\mathbb{Z}</M>) to the
    group <M>\mathbb{Z}^\times</M> of units of&nbsp;<M>\mathbb{Z}</M>,
    see&nbsp;<Cite Key="Kohl05"/>, Theorem&nbsp;2.12.8.
    Therefore the kernel of the sign mapping is a normal subgroup
    of RCWA(<M>\mathbb{Z}</M>) of index&nbsp;2.
    The simple group CT(<M>\mathbb{Z}</M>) is a subgroup of this kernel.
<Example>
<![CDATA[
gap> List([ClassTransposition(3,4,2,6),
>          ClassShift(0,3),ClassReflection(2,5)],Sign);
[ 1, -1, -1 ]
]]>
</Example>
  </Description>
</ManSection>

</Section>

<!-- #################################################################### -->

<Section Label="sec:FactoringRcwaMappings">
<Heading>Factoring residue-class-wise affine permutations</Heading>

Factoring group elements into the members of some <Q>nice</Q> set of
generators is often helpful. In this section we describe an operation which
attempts to solve this problem for the group RCWA(<M>\mathbb{Z}</M>).
Elements of finitely generated rcwa groups can be factored into generators
<Q>as usual</Q>, see&nbsp;<Ref Meth="PreImagesRepresentative"
Label="for an epi. from a free group to an rcwa group"/>.

<ManSection>
  <Attr Name="FactorizationIntoCSCRCT"
        Arg="g" Label="for an rcwa permutation of Z"/>
  <Meth Name="Factorization" Arg="g" Label="for an rcwa permutation of Z"/>
  <Returns>
    A factorization of the bijective rcwa mapping&nbsp;<A>g</A>
    of&nbsp;<M>\mathbb{Z}</M> into class shifts, class reflections and class
    transpositions, provided that such a factorization exists and the
    method finds it.
  </Returns>
  <Description>
    The method may return <C>fail</C>, stop with an error message or run
    into an infinite loop. If it returns a result, this result is always
    correct. <P/>

    The problem of obtaining a factorization as described is algorithmically
    difficult, and this factorization routine is currently perhaps the most
    sophisticated part of the &RCWA; package. Information about the
    progress of the factorization process can be obtained by setting the
    info level of the Info class <Ref InfoClass="InfoRCWA"/> to&nbsp;2. <P/>

    By default, prime switches (<M>\rightarrow</M>
    <Ref Func="PrimeSwitch" Label="p"/>) are taken as one factor. 
    If the option <A>ExpandPrimeSwitches</A> is set, they are each
    decomposed into the 6 class transpositions given in the definition. <P/>

    By default, the factoring process begins with splitting off factors
    from the right. This can be changed by setting the option
    <A>Direction</A> to <C>"from the left"</C>. <P/>

    By default, a reasonably coarse respected partition of the integral
    mapping occuring in the final stage of the algorithm is computed.
    This can be suppressed by setting the option <A>ShortenPartition</A>
    equal to <C>false</C>. <P/>

    By default, at the end it is checked whether the product of the
    determined factors indeed equals <A>g</A>. This check can be
    suppressed by setting the option <A>NC</A>.
<Example>
<![CDATA[
gap> Factorization(Comm(ClassShift(0,3)*ClassReflection(1,2),
>                       ClassShift(0,2)));
[ ClassReflection(2,3), ClassShift(2,6)^-1, ClassTransposition(0,6,2,6), 
  ClassTransposition(0,6,5,6) ]
]]>
</Example>
  </Description>
</ManSection>

For purposes of demonstrating the capabilities of the factorization routine,
in Section&nbsp;<Ref Label="sec:FactoringTheCollatzPermutation"/>
Collatz' permutation is factored. Lothar Collatz has investigated this
permutation in&nbsp;1932. Its cycle structure is unknown so far. <P/>

The permutations of the following kind play an important role in
factoring rcwa permutations of&nbsp;<M>\mathbb{Z}</M> into class shifts,
class reflections and class transpositions:

<ManSection>
  <Func Name="PrimeSwitch" Arg="p" Label="p"/>
  <Func Name="PrimeSwitch" Arg="p, k" Label="p, k"/>
  <Returns>
    In the one-argument form the <E>prime switch</E>
    <M>\sigma_p := \tau_{0(8),1(2p)} \cdot \tau_{4(8),-1(2p)} \cdot
    \tau_{0(4),1(2p)} \cdot \tau_{2(4),-1(2p)} \cdot \tau_{2(2p),1(4p)}
    \cdot \tau_{4(2p),2p+1(4p)}</M>, and in the two-argument form
    the restriction of <M>\sigma_p</M> by <M>n \mapsto kn</M>.
  </Returns>
  <Description>
    For an odd prime <M>p</M>, the prime switch <M>\sigma_p</M>
    is a bijective rcwa mapping of <M>\mathbb{Z}</M> with
    modulus&nbsp;<M>4p</M>, multiplier&nbsp;<M>p</M> and divisor&nbsp;2.
    The key mathematical property of a prime switch is that it is a product
    of class transpositions, but that its multiplier and its divisor are
    coprime anyway. Prime switches can be distinguished from other
    rcwa mappings by their &GAP; property <C>IsPrimeSwitch</C>.
    <Index Key="IsPrimeSwitch" Subkey="for an rcwa mapping">
       <C>IsPrimeSwitch</C>
    </Index>
<Example>
<![CDATA[
gap> Display(PrimeSwitch(3));

Wild bijective rcwa mapping of Z with modulus 12

              n mod 12              |          n^PrimeSwitch(3)
------------------------------------+------------------------------------
   0                                | n/2
   1  7                             | n + 1
   2  6 10                          | (3n + 4)/2
   3  9                             | n
   4                                | n - 3
   5  8 11                          | n - 1

gap> Factorization(PrimeSwitch(3));
[ ClassTransposition(1,6,0,8), ClassTransposition(5,6,4,8), 
  ClassTransposition(0,4,1,6), ClassTransposition(2,4,5,6), 
  ClassTransposition(2,6,1,12), ClassTransposition(4,6,7,12) ]
]]>
</Example>
  </Description>
</ManSection>

Obtaining a factorization of a bijective rcwa mapping into class shifts,
class reflections and class transpositions is particularly difficult if
multiplier and divisor are coprime. A prototype of permutations which have
this property has been introduced in a different context
in&nbsp;<Cite Key="Keller99"/>: 

<ManSection>
  <Func Name="mKnot" Arg="m" Label="for an odd integer"/>
  <Returns>
    The permutation <M>g_m</M> as introduced in&nbsp;<Cite Key="Keller99"/>.
  </Returns>
  <Description>
    The argument <A>m</A> must be an odd integer greater than&nbsp;1.
<Example>
<![CDATA[
gap> Display(mKnot(5));

Wild bijective rcwa mapping of Z with modulus 5

              n mod 5               |             n^mKnot(5)
------------------------------------+------------------------------------
  0                                 | 6n/5
  1                                 | (4n + 1)/5
  2                                 | (6n - 2)/5
  3                                 | (4n + 3)/5
  4                                 | (6n - 4)/5

]]>
</Example>
  </Description>
</ManSection>

<Alt Only="LaTeX">\noindent</Alt>
In his article, Timothy P. Keller shows that a permutation of this type
cannot have infinitely many cycles of any given finite length.

</Section>

<!-- #################################################################### -->

<Section Label="sec:ExtractingRoots">
<Heading>
  Extracting roots of residue-class-wise affine mappings
</Heading>

<ManSection>
  <Meth Name="Root"
        Arg="f, k" Label="k-th root of an rcwa mapping"/>
  <Returns>
    An rcwa mapping <C>g</C> such that <C>g&circum;<A>k</A>=<A>f</A></C>,
    provided that such a mapping exists and that there is a method available
    which can determine it.
  </Returns>
  <Description>
    Currently, extracting roots is implemented for rcwa permutations
    of finite order.
<Example>
<![CDATA[
gap> Root(ClassTransposition(0,2,1,2),100);
<bijective rcwa mapping of Z with modulus 8>
gap> Display(last);

Bijective rcwa mapping of Z with modulus 8

              n mod 8               |                n^f
------------------------------------+------------------------------------
  0 1 2 3 4 5                       | n + 2
  6                                 | n - 5
  7                                 | n - 7

gap> last^100 = ClassTransposition(0,2,1,2);
true
]]>
</Example>
  </Description>
</ManSection>

</Section>

<!-- #################################################################### -->

<Section Label="sec:NonBijectiveMappings">
<Heading>
  Special functions for non-bijective mappings
</Heading>

<ManSection>
  <Attr Name="RightInverse" Arg="f" Label="of an injective rcwa mapping"/>
  <Returns>
    A right inverse of the injective rcwa mapping&nbsp;<A>f</A>,
    i.e. a mapping <M>g</M> such that <A>f</A><M>g</M>&nbsp;=&nbsp;1.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> twice := 2*IdentityRcwaMappingOfZ;
Rcwa mapping of Z: n -> 2n
gap> twice * RightInverse(twice);
IdentityMapping( Integers )
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Oper Name="CommonRightInverse" Arg="l, r"
        Label="of two injective rcwa mappings"/>
  <Returns>
    A mapping <M>d</M> such that <A>l</A><M>d</M> = <A>r</A><M>d</M> = 1.
  </Returns>
  <Description>
    The mappings <A>l</A> and <A>r</A> must be injective, and their images
    must form a partition of their source.
<Example>
<![CDATA[
gap> twice := 2*IdentityRcwaMappingOfZ; twiceplus1 := twice+1;
Rcwa mapping of Z: n -> 2n
Rcwa mapping of Z: n -> 2n + 1
gap> Display(CommonRightInverse(twice,twiceplus1));

Rcwa mapping of Z with modulus 2

              n mod 2               |                n^f
------------------------------------+------------------------------------
  0                                 | n/2
  1                                 | (n - 1)/2

]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="ImageDensity" Arg="f" Label="of an rcwa mapping"/>
  <Returns>
    The <E>image density</E> of the rcwa mapping&nbsp;<A>f</A>.
  </Returns>
  <Description>
    In the notation introduced in the definition of an rcwa mapping,
    the <E>image density</E> of an rcwa mapping&nbsp;<M>f</M> is defined by
    <Alt Not="LaTeX">1/m</Alt><Alt Only="LaTeX"><M>\frac{1}{m}</M></Alt>
    <M>\sum_{r(m) \in R/mR} |R/c_{r(m)}R|/|R/a_{r(m)}R|</M>.
    The image density of an injective rcwa mapping is <M>\leq 1</M>, and
    the image density of a surjective rcwa mapping is <M>\geq 1</M>
    (this can be seen easily). Thus in particular the image density of
    a bijective rcwa mapping is&nbsp;1.
<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> List( [ T, ClassShift(0,1), RcwaMapping([[2,0,1]]) ], ImageDensity );
[ 4/3, 1, 1/2 ]
]]>
</Example>
  </Description>
</ManSection>

<Index Key="InjectiveAsMappingFrom" Subkey="for an rcwa mapping">
  <C>InjectiveAsMappingFrom</C>
</Index>

Given an rcwa mapping <C>f</C>, the function <C>InjectiveAsMappingFrom</C>
returns a set <C>S</C> such that the restriction of <C>f</C> to&nbsp;<C>S</C>
is injective, and such that the image of <C>S</C> under&nbsp;<C>f</C> is the
entire image of&nbsp;<C>f</C>.

<Example>
<![CDATA[
gap> InjectiveAsMappingFrom(T);
0(2)
]]>
</Example>

</Section>

<!-- #################################################################### -->

<Section Label="sec:Trajectories">
<Heading>
  On trajectories and cycles of residue-class-wise affine mappings
</Heading>

&RCWA; provides various methods to compute trajectories of rcwa mappings:

<ManSection>
  <Heading> Trajectory (methods for rcwa mappings) </Heading>
  <Meth Name="Trajectory" Arg="f, n, length"
        Label="for rcwa mapping, starting point, length"/>
  <Meth Name="Trajectory" Arg="f, n, length, m"
        Label="for rcwa mapping, starting point, length, modulus"/>
  <Meth Name="Trajectory" Arg="f, n, terminal"
        Label="for rcwa mapping, starting point, set of end points"/>
  <Meth Name="Trajectory" Arg="f, n, terminal, m"
        Label="for rcwa mapping, starting point, set of end points, modulus"/>
  <Returns>
    The first <A>length</A> iterates in the trajectory of the
    rcwa mapping&nbsp;<A>f</A> starting at&nbsp;<A>n</A>, respectively the
    initial part of the trajectory of the rcwa mapping&nbsp;<A>f</A>
    starting at&nbsp;<A>n</A> which ends at the first occurence of an
    iterate in the set <A>terminal</A>. If the argument <A>m</A> is given,
    the iterates are reduced (mod&nbsp;<A>m</A>).
  </Returns>
  <Description>
    To save memory when computing long trajectories containing huge
    iterates, the reduction (mod&nbsp;<A>m</A>) is done each time before
    storing an iterate.
    In place of the ring element&nbsp;<A>n</A>, the methods also accept
    a finite set of ring elements or a union of residue classes.
<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Trajectory(T,27,15); Trajectory(T,27,20,5);
[ 27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103 ]
[ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 3, 0, 0, 3 ]
gap> Trajectory(T,15,[1]); Trajectory(T,15,[1],2);
[ 15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1 ]
[ 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 ]
gap> Trajectory(T,ResidueClass(Integers,3,0),Integers);
[ 0(3), 0(3) U 5(9), 0(3) U 5(9) U 7(9) U 8(27), 
  <union of 20 residue classes (mod 27)>, 
  <union of 73 residue classes (mod 81)>, Z \ 10(81) U 37(81), Integers ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Heading>
    Trajectory (methods for rcwa mappings -- <Q>accumulated coefficients</Q>)
  </Heading>
  <Meth Name="Trajectory" Arg="f, n, length, whichcoeffs"
        Label="for rcwa mapping, starting point, length, coeff.-spec."/>
  <Meth Name="Trajectory" Arg="f, n, terminal, whichcoeffs"
        Label="for rcwa mapping, starting point, set of end points, coeff.-spec."/>
  <Returns>
    Either the list <C>c</C> of triples of coprime coefficients such that
    for any&nbsp;<C>k</C> it holds that
    <C><A>n</A>&circum;(<A>f</A>&circum;(k-1)) =
    (c[k][1]*<A>n</A> + c[k][2])/c[k][3]</C> or the last entry of that list,
    depending on whether <A>whichcoeffs</A> is <C>"AllCoeffs"</C> or
    <C>"LastCoeffs"</C>.
  </Returns>
  <Description>
    The meanings of the arguments <A>length</A> and <A>terminal</A> are
    the same as in the methods for the operation <C>Trajectory</C>
    described above. In general, computing only the last coefficient triple
    (<A>whichcoeffs</A> = <C>"LastCoeffs"</C>) needs considerably less
    memory than computing the entire list.
<Example>
<![CDATA[
gap> Trajectory(T,27,[1],"LastCoeffs");
[ 36472996377170786403, 195820718533800070543, 1180591620717411303424 ]
gap> (last[1]*27+last[2])/last[3];
1
]]>
</Example>
  </Description>
</ManSection>

When dealing with problems like the <M>3n+1</M>-Conjecture or when
determining the degree of transitivity of the natural action of an rcwa group
on its underlying ring, an important task is to determine the residue classes
whose elements get larger or smaller when applying a given rcwa mapping:

<ManSection>
  <Heading> IncreasingOn &amp; DecreasingOn (for an rcwa mapping) </Heading>
  <Attr Name="IncreasingOn" Arg="f" Label="for an rcwa mapping"/>
  <Attr Name="DecreasingOn" Arg="f" Label="for an rcwa mapping"/>
  <Returns>
    The union of all residue classes <M>r(m)</M> such that
    <M>|R/a_{r(m)}R| &gt; |R/c_{r(m)}R|</M> or
    <M>|R/a_{r(m)}R| &lt; |R/c_{r(m)}R|</M>, respectively, where <M>R</M>
    denotes the source, <M>m</M> denotes the modulus and <M>a_{r(m)}</M>,
    <M>b_{r(m)}</M> and <M>c_{r(m)}</M> denote the coefficients
    of&nbsp;<A>f</A> as introduced in
    Section&nbsp;<Ref Label="sec:basicdefinitions"/>.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> List([1..3],k->IncreasingOn(T^k));
[ 1(2), 3(4), 3(4) U 1(8) U 6(8) ]
gap> List([1..3],k->DecreasingOn(T^k));
[ 0(2), Z \ 3(4), 0(4) U 2(8) U 5(8) ]
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz' permutation
gap> List([-2..2],k->IncreasingOn(a^k));
[ Z \ 1(8) U 7(8), 0(2), [  ], Z \ 0(3), 1(9) U 4(9) U 5(9) U 8(9) ]
]]>
</Example>
  </Description>
</ManSection>

We assign certain directed graphs to rcwa mappings, which encode the order
in which trajectories may traverse the residue classes modulo some modulus:

<ManSection>
  <Oper Name="TransitionGraph"
        Arg="f, m" Label="for an rcwa mapping and a modulus"/>
  <Returns>
    The transition graph of the rcwa mapping&nbsp;<A>f</A>
    for modulus&nbsp;<A>m</A>.
  </Returns>
  <Description>
    <Index Key="rcwa mapping" Subkey="transition graph">rcwa mapping</Index>
    <Alt Only="LaTeX">\noindent</Alt>
    The <E>transition graph</E> <M>\Gamma_{f,m}</M> of&nbsp;<M>f</M> for
    modulus&nbsp;<M>m</M> is defined as follows:
    <Enum>
      <Item>
        The vertices are the residue classes (mod&nbsp;<M>m</M>).
      </Item>
      <Item>
        There is an edge from <M>r_1(m)</M> to <M>r_2(m)</M> if and only if
        there is some <M>n \in r_1(m)</M> such that
        <M>n^f \in r_2(m)</M>.
      </Item>
    </Enum>
    The assignment of the residue classes (mod&nbsp;<M>m</M>) to the
    vertices of the graph corresponds to the ordering of the residues in
    <C>AllResidues(Source(<A>f</A>),<A>m</A>)</C>.
    The result is returned in the format used by the package
    <Package>GRAPE</Package>&nbsp;<Cite Key="GRAPE"/>.
  </Description>
</ManSection>

There are a couple of operations and attributes which are based
on these graphs:

<ManSection>
  <Oper Name="OrbitsModulo"
        Arg="f, m" Label="for an rcwa mapping and a modulus"/>
  <Returns>
    The partition of <C>AllResidues(Source(<A>f</A>),<A>m</A>)</C>
    corresponding to the weakly connected components of the transition
    graph of the rcwa mapping&nbsp;<A>f</A> for modulus&nbsp;<A>m</A>.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> OrbitsModulo(ClassTransposition(0,2,1,4),8);
[ [ 0, 1, 4 ], [ 2, 5, 6 ], [ 3 ], [ 7 ] ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Oper Name ="FactorizationOnConnectedComponents"
        Arg = "f, m" Label="for an rcwa mapping and a modulus"/>
  <Returns>
    The set of restrictions of the rcwa mapping&nbsp;<A>f</A> to the
    weakly connected components of its transition graph <M>\Gamma_{f,m}</M>.
  </Returns>
  <Description>
    The product of the returned mappings is&nbsp;<A>f</A>.
    They have pairwise disjoint supports, hence any two of them commute.
<Example>
<![CDATA[
gap> sigma := ClassTransposition(1,4,2,4)  * ClassTransposition(1,4,3,4)
>           * ClassTransposition(3,9,6,18) * ClassTransposition(1,6,3,9);;
gap> List(FactorizationOnConnectedComponents(sigma,36),Support);
[ 33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36), 
  <union of 23 residue classes (mod 36)> \ [ -6, 3 ] ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Oper Name="TransitionMatrix"
        Arg="f, m" Label="for an rcwa mapping and a modulus"/>
  <Returns>
    The transition matrix of the rcwa mapping&nbsp;<A>f</A> for
    modulus&nbsp;<A>m</A>.
  </Returns>
  <Description>
    Let <M>M</M> be this matrix. Then for any two residue classes <M>r_1(m),
    r_2(m) \in R/mR</M>, the entry <M>M_{r_1(m),r_2(m)}</M> is defined by
    <Alt Only="LaTeX">
      <Display>
        <![CDATA[
          M_{r_1(m),r_2(m)} \ := \ \displaystyle{\frac{|R/mR|}{|R/\hat{m}R|}}
          \cdot \left|\left\{r(\hat{m}) \in R/\hat{m}R | \ r \in r_1(m)
          \wedge r^f \in r_2(m)\right\}\right|,
        ]]>
      </Display>
    </Alt>
    <Alt Only="HTML"><![CDATA[<center>
      <img src = "transmat.png" width = "599" height = "47"
           alt = "(see the PDF version of the manual),"/>
    </center>]]></Alt>
    <Alt Only="Text">
      (see the PDF- or HTML version of the manual),
    </Alt>
    where <M>\hat{m}</M> is the product of <A>m</A> and the square of the
    modulus of&nbsp;<A>f</A>.
    The assignment of the residue classes (mod&nbsp;<A>m</A>) to the rows and
    columns of the matrix corresponds to the ordering of the residues in
    <C>AllResidues(Source(<A>f</A>),<A>m</A>)</C>. <P/>

    The transition matrix is a weighted adjacency matrix of the corresponding
    transition graph <C>TransitionGraph(<A>f</A>,<A>m</A>)</C>.
    The sums of the rows of a transition matrix are always equal to&nbsp;1.
<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Display(TransitionMatrix(T^3,3));
[ [  1/8,  1/4,  5/8 ],
  [    0,  1/4,  3/4 ],
  [    0,  3/8,  5/8 ] ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Heading> Sources &amp; Sinks (of an rcwa mapping) </Heading>
  <Attr Name="Sources" Arg="f" Label="of an rcwa mapping"/>
  <Attr Name="Sinks" Arg="f" Label="of an rcwa mapping"/>
  <Returns>
    A list of unions of residue classes modulo the modulus&nbsp;<M>m</M>
    of the rcwa mapping&nbsp;<A>f</A>, as described below.
  </Returns>
  <Description>
    The returned list contains an entry for any strongly
    connected component of the transition graph of&nbsp;<A>f</A> for
    modulus&nbsp;<C>Mod(<A>f</A>)</C> which has only outgoing edges
    (<Q>source</Q>) or which has only ingoing edges (<Q>sink</Q>),
    respectively. The list entry corresponding to such a component
    is the union of the vertices belonging to it.
<Example>
<![CDATA[
gap> g := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;
gap> Sources(g); Sinks(g);
[ 0(4) ]
[ 1(4) ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Attr Name="Loops" Arg="f" Label="of an rcwa mapping"/>
  <Returns>
    If <A>f</A> is bijective, the list of non-isolated vertices of the
    transition graph of&nbsp;<A>f</A> for modulus <C>Mod(<A>f</A>)</C>
    which carry a loop. In general, the list of vertices of that transition
    graph which carry a loop, but which <A>f</A> does not fix setwise.
  </Returns>
  <Description>
<Example>
<![CDATA[
gap> Loops(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[ 0(4), 1(4) ]
]]>
</Example>
  </Description>
</ManSection>

There is a nice invariant of trajectories of the Collatz mapping:

<ManSection>
  <Func Name="GluckTaylorInvariant" Arg="a" Label="of a trajectory"/>
  <Returns>
    The invariant introduced in&nbsp;<Cite Key="GluckTaylor02"/>. This is
    <M>(\sum_{i=1}^l a_i \cdot a_{i \mod l + 1})/(\sum_{i=1}^l a_i^2)</M>,
    where <M>l</M> denotes the length of&nbsp;<A>a</A>.
  </Returns>
  <Description>
    The argument <A>a</A> must be a list of integers.
    In&nbsp;<Cite Key="GluckTaylor02"/> it is shown that if <A>a</A>
    is a trajectory of the `original' Collatz mapping <M>n</M>
    <M>\mapsto</M> (<M>n/2</M> if <M>n</M> even, <M>3n+1</M> if
    <M>n</M> odd) starting at an odd integer <M>\geq 3</M> and ending
    at&nbsp;1, then the invariant lies in the interval <M>]9/13,5/7[</M>.
<Example>
<![CDATA[
gap> C := RcwaMapping([[1,0,2],[3,1,1]]);;
gap> List([3,5..49],n->Float(GluckTaylorInvariant(Trajectory(C,n,[1]))));
[ 0.701053, 0.696721, 0.708528, 0.707684, 0.706635, 0.695636, 0.711769,
  0.699714, 0.707409, 0.693833, 0.710432, 0.706294, 0.714242, 0.699935,
  0.714242, 0.705383, 0.706591, 0.698198, 0.712222, 0.714242, 0.709048,
  0.69612, 0.714241, 0.701076 ]
]]>
</Example>
  </Description>
</ManSection>

Quite often one can make certain <Q>educated guesses</Q> on the overall
behaviour of the trajectories of a given rcwa mapping. For example it is
reasonably straightforward to make the conjecture that all trajectories of
the Collatz mapping eventually enter the finite set <M>\{-136, -91, -82, -68,
-61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1, 0, 1, 2 \}</M>, or that
<Q>on average</Q> the next number in a trajectory of the Collatz mapping is
smaller than the preceding one by a factor of <M>\sqrt{3}/2</M>. However it
is clear that such guesses can be wrong, and that they therefore cannot be
used to prove anything. Nevertheless they can sometimes be useful:

<ManSection>
  <Oper Name="LikelyContractionCentre"
        Arg="f, maxn, bound" Label="of an rcwa mapping"/>
  <Returns> A list of ring elements (see below). </Returns>
  <Description>
    This operation tries to compute the <E>contraction centre</E> of the
    rcwa mapping <A>f</A>. Assuming its existence this is the unique finite
    subset <M>S_0</M> of the source of&nbsp;<A>f</A> on which <A>f</A>
    induces a permutation and which intersects nontrivially with any
    trajectory of&nbsp;<A>f</A>. The mapping&nbsp;<A>f</A> is assumed
    to be <E>contracting</E>, i.e. to have such a contraction centre.
    As in general contraction centres are likely not computable, the methods
    for this operation are probabilistic and may return wrong results.
    The argument <A>maxn</A> is a bound on the starting
    value and <A>bound</A> is a bound on the elements of the trajectories
    to be searched.
    If the limit <A>bound</A> is exceeded, an Info message on Info
    level&nbsp;3 of <C>InfoRCWA</C> is given.
<Example>
<![CDATA[
gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> S0 := LikelyContractionCentre(T,100,1000);
#I  Warning: `LikelyContractionCentre' is highly probabilistic.
The returned result can only be regarded as a rough guess.
See ?LikelyContractionCentre for more information.
[ -136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, 
  -1, 0, 1, 2 ]
]]>
</Example>
  </Description>
</ManSection>

<ManSection>
  <Oper Name="GuessedDivergence" Arg="f" Label="of an rcwa mapping"/>
  <Returns>
    A floating point value which is intended to be a rough guess on how fast
    the trajectories of the rcwa mapping&nbsp;<A>f</A> diverge (return value
    greater than&nbsp;1) or converge (return value smaller than&nbsp;1).
  </Returns>
  <Description>
    Nothing particular is guaranteed.
<Example>
<![CDATA[
gap> GuessedDivergence(T);
#I  Warning: GuessedDivergence: no particular return value is guaranteed.
0.866025
]]>
</Example>
  </Description>
</ManSection>

</Section>

<Alt Only="LaTeX">\pagebreak[4]</Alt>

<!-- #################################################################### -->

<Section Label="sec:CategoriesOfRcwaMappings">
<Heading>The categories and families of rcwa mappings</Heading>

<ManSection>
  <Filt Name="IsRcwaMapping" Arg="f"/>
  <Filt Name="IsRcwaMappingOfZ" Arg="f"/>
  <Filt Name="IsRcwaMappingOfZ_pi" Arg="f"/>
  <Filt Name="IsRcwaMappingOfGFqx" Arg="f"/>
  <Returns>
    <C>true</C> if <A>f</A> is an rcwa mapping,
    an rcwa mapping of the ring of integers,
    an rcwa mapping of a semilocalization of the ring of integers or
    an rcwa mapping of a polynomial ring in one variable over a finite field,
    respectively, and <C>false</C> otherwise.
  </Returns>
  <Description>
    Often the same methods can be used for rcwa mappings of the ring of
    integers and of its semilocalizations. For this reason there is
    a category <C>IsRcwaMappingOfZOrZ&uscore;pi</C> which is the union of
    <C>IsRcwaMappingOfZ</C> and <C>IsRcwaMappingOfZ&uscore;pi</C>.
    <Index Key="IsRcwaMappingOfZOrZ_pi">
      <C>IsRcwaMappingOfZOrZ&uscore;pi</C>
    </Index>
    The internal representation of rcwa mappings is called
    <C>IsRcwaMappingStandardRep</C>.
    <Index Key="IsRcwaMappingStandardRep">
      <C>IsRcwaMappingStandardRep</C>
    </Index>
    There are methods available for <C>ExtRepOfObj</C> and
    <C>ObjByExtRep</C>.
    <Index Key="ExtRepOfObj"><C>ExtRepOfObj</C></Index>
    <Index Key="ObjByExtRep"><C>ObjByExtRep</C></Index>
  </Description>
</ManSection>

<ManSection>
  <Func Name="RcwaMappingsFamily" Arg="R" Label="of a ring"/>
  <Returns>
    The family of rcwa mappings of the ring&nbsp;<A>R</A>.
  </Returns>
</ManSection>

</Section>

<!-- #################################################################### -->

</Chapter>

<!-- #################################################################### -->