Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 5e1854624d3bc613bdd0dd13d1ef9ac7 > files > 3371

gap-system-4.4.12-5mdv2010.0.i586.rpm

<!-- $Id: decomp.xml,v 1.23 2007/12/27 19:33:26 alexk Exp $ -->

<!-- ********************Decomp******************** -->
<Chapter Label="Decomp">
<Heading>Wedderburn decomposition</Heading>

<Section Label="DecompDecomp">
<Heading>Wedderburn decomposition</Heading>

<ManSection>
   <Attr Name="WedderburnDecomposition" 
         Arg="FG"  
         Comm="The Wedderburn decomposition of a group algebras given as a list 
         of GAP objects" />
   <Returns>
         A list of simple algebras.
   </Returns>
   <Description>
         The input <A>FG</A> should be a group algebra of a finite group <M>G</M> 
         over the field <M>F</M>, where <M>F</M> is either an abelian number field 
         (i.e. a subfield of a finite cyclotomic extension of the rationals) or 
         a finite field of characteristic coprime with the order of <M>G</M>.
         <P/> 
         
         The function returns the list of all <E>Wedderburn components</E>
         (<Ref Sect="WedDec" />) of the group algebra <A>FG</A>. 
         If <M>F</M> is an abelian number field then each Wedderburn component is 
         given as a matrix algebra
         of a <E>cyclotomic algebra</E> (<Ref Sect="Cyclotomic" />). 
         If <M>F</M> is a finite field then the Wedderburn components are 
         given as matrix algebras over finite fields. 
                 
<Example>
<![CDATA[
gap> WedderburnDecomposition( GroupRing( GF(5), DihedralGroup(16) ) );
[ ( GF(5)^[ 1, 1 ] ), ( GF(5)^[ 1, 1 ] ), ( GF(5)^[ 1, 1 ] ),
  ( GF(5)^[ 1, 1 ] ), ( GF(5)^[ 2, 2 ] ), ( GF(5^2)^[ 2, 2 ] ) ]
gap> WedderburnDecomposition( GroupRing( Rationals, DihedralGroup(16) ) );
[ Rationals, Rationals, Rationals, Rationals, ( Rationals^[ 2, 2 ] ),
  <crossed product with center NF(8,[ 1, 7 ]) over AsField( NF(8,
    [ 1, 7 ]), CF(8) ) of a group of size 2> ]
gap> WedderburnDecomposition( GroupRing( CF(5), DihedralGroup(16) ) );
[ CF(5), CF(5), CF(5), CF(5), ( CF(5)^[ 2, 2 ] ),
  <crossed product with center NF(40,[ 1, 31 ]) over AsField( NF(40,
    [ 1, 31 ]), CF(40) ) of a group of size 2> ]
]]>
</Example>

   </Description>
</ManSection>

The previous examples show that if <M>D_{16}</M> denotes the dihedral 
group of order <M>16</M> then the <E>Wedderburn decomposition</E> 
(<Ref Sect="WedDec"/>) of <M>\mathbb F_5 D_{16}</M>, <M>&QQ; D_{16}</M> and 
<M>&QQ; (\xi_5) D_{16}</M> are respectively

  <Display>
  \mathbb F_5 D_{16} = 4 \mathbb F_5 \oplus M_2( \mathbb F_5 ) \oplus M_2( \mathbb F_{25} ),  
  </Display>

  <Display>
  &QQ; D_{16} = 4 &QQ; \oplus M_2( &QQ; ) \oplus (K(\xi_8)/K,t),
  </Display>

and

  <Display>
  &QQ; (\xi_5) D_{16} = 4 &QQ; (\xi_5) \oplus M_2( &QQ; (\xi_5) ) \oplus (F(\xi_{40})/F,t),  
  </Display>
  
where <M>(K(\xi_8)/K,t)</M> is a <E>cyclotomic algebra</E> (<Ref Sect="Cyclotomic" />)
with the centre <M>K=NF(8,[ 1, 7 ])= &QQ; (\sqrt{2})</M>, 
<M>(F(\xi_{40})/F,t) = &QQ; (\sqrt{2},\xi_5)</M> is a cyclotomic algebra with centre  <M>F=NF(40,[ 1, 31 ])</M> and 
<M>\xi_n</M> denotes a <M>n</M>-th root of unity.
<P/>

Two more examples:

<Example>
<![CDATA[
gap> WedderburnDecomposition( GroupRing( Rationals, SmallGroup(48,15) ) );
[ Rationals, Rationals, Rationals, Rationals, ( Rationals^[ 2, 2 ] ),
  <crossed product with center Rationals over CF(3) of a group of size 2>,
  ( CF(3)^[ 2, 2 ] ), <crossed product with center Rationals over CF(
    3) of a group of size 2>, <crossed product with center NF(8,
    [ 1, 7 ]) over AsField( NF(8,[ 1, 7 ]), CF(8) ) of a group of size 2>,
  <crossed product with center Rationals over CF(12) of a group of size 4> ]
gap> WedderburnDecomposition( GroupRing( CF(3), SmallGroup(48,15) ) );
[ CF(3), CF(3), CF(3), CF(3), ( CF(3)^[ 2, 2 ] ), ( CF(3)^[ 2, 2 ] ),
  ( CF(3)^[ 2, 2 ] ), ( CF(3)^[ 2, 2 ] ), ( CF(3)^[ 2, 2 ] ),
  <crossed product with center NF(24,[ 1, 7 ]) over AsField( NF(24,
    [ 1, 7 ]), CF(24) ) of a group of size 2>,
  ( <crossed product with center CF(3) over AsField( CF(3), CF(
    12) ) of a group of size 2>^[ 2, 2 ] ) ]
]]>
</Example>

In some cases, in characteristic zero, some entries of the output of 
<Ref Attr="WedderburnDecomposition" /> do not provide
full matrix algebras over a <E>cyclotomic algebra</E> 
(<Ref Sect="Cyclotomic" />), but "fractional matrix algebras". 
That entry is not an algebra that can be used as a &GAP; object.
Instead it is a pair formed by a rational giving the "size" of the matrices
and a crossed product.
See <Ref Sect="WedDec" /> for a theoretical explanation of 
this phenomenon. In this case a warning message is displayed.

<Example>
<![CDATA[
gap> QG:=GroupRing(Rationals,SmallGroup(240,89));
<algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecomposition(QG);
Wedderga: Warning!!!
Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[ Rationals, Rationals, <crossed product with center Rationals over CF(
    5) of a group of size 4>, ( Rationals^[ 4, 4 ] ), ( Rationals^[ 4, 4 ] ),
  ( Rationals^[ 5, 5 ] ), ( Rationals^[ 5, 5 ] ), ( Rationals^[ 6, 6 ] ),
  <crossed product with center NF(12,[ 1, 11 ]) over AsField( NF(12,
    [ 1, 11 ]), NF(60,[ 1, 11 ]) ) of a group of size 4>,
  [ 3/2, <crossed product with center NF(8,[ 1, 7 ]) over AsField( NF(8,
        [ 1, 7 ]), NF(40,[ 1, 31 ]) ) of a group of size 4> ] ]  
]]>
</Example>



<!-- ************************ -->

<ManSection>
   <Attr Name="WedderburnDecompositionInfo" 
         Arg="FG"  
         Comm="The Wedderburn decomposition of a group algebras 
              given as a list of lists of numerical data 
              describing each Wedderburn component" />
   <Returns>
         A list with each entry a numerical description of a <E>cyclotomic algebra</E>
         (<Ref Sect="Cyclotomic" />).
   </Returns>
   <Description>
         The input <A>FG</A> should be a group algebra of a finite group <M>G</M> 
         over the field <M>F</M>, where <M>F</M> is either an abelian number field 
         (i.e. a subfield of a finite cyclotomic extension of the rationals) or a 
         finite field of characteristic coprime 
         to the order of <M>G</M>. 
         <P/> 
         
         This function is a numerical counterpart of 
         <Ref Attr="WedderburnDecomposition" />.
         <P/>
                 
         It returns a list formed by lists of lengths 2, 4 or 5. <P/> 
         
         The lists of length 2 are of the form 
         <Display>
         [n,F],
         </Display>
         where <M>n</M> is a positive integer and <M>F</M> is a field. 
         It represents the <M>n\times n</M> matrix algebra <M>M_n(F)</M> 
         over the field <M>F</M>.<P/> 
         
         The lists of length 4 are of the form 
         <Display>
         [n,F,k,[d,\alpha,\beta]],
         </Display>
         where <M>F</M> is a field and <M>n,k,d,\alpha,\beta</M> are 
         non-negative integers, satisfying the conditions mentioned in 
         Section <Ref Sect="NumDesc" />.
         
         It represents the <M>n\times n</M> matrix algebra <M>M_n(A)</M> 
         over the cyclic algebra
         <Display>
         A=F(\xi_k)[u | \xi_k^u = \xi_k^{\alpha}, u^d = \xi_k^{\beta}],
         </Display>
         where <M>\xi_k</M> is a primitive <M>k</M>-th root of unity. <P/>
         
         The lists of length 5 are of the form 
           <Display>
           [n,F,k,[d_i,\alpha_i,\beta_i]_{i=1}^m, [\gamma_{i,j}]_{1\le i &lt; j \le m} ],
           </Display>
          where <M>F</M> is a field and <M>n,k,d_i,\alpha_i,\beta_i,\gamma_{i,j}</M> 
          are non-negative integers. 
          It represents the <M>n\times n</M> matrix algebra <M>M_n(A)</M> over 
          the <E>cyclotomic algebra</E> (<Ref Sect="Cyclotomic" />)
          <Display>
          A = F(\xi_k)[g_1,\ldots,g_m \mid 
          \xi_k^{g_i} = \xi_k^{\alpha_i}, g_i^{d_i}=\xi_k^{\beta_i}, 
                        g_jg_i=\xi_k^{\gamma_{ij}} g_i g_j],
          </Display>
          where <M>\xi_k</M> is a primitive <M>k</M>-th root of unity
         (see <Ref Sect="NumDesc" />).  
         
<Example>
<![CDATA[
gap> WedderburnDecompositionInfo( GroupRing( Rationals, DihedralGroup(16) ) );
[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],
  [ 2, Rationals ], [ 1, NF(8,[ 1, 7 ]), 8, [ 2, 7, 0 ] ] ]
gap> WedderburnDecompositionInfo( GroupRing( CF(5), DihedralGroup(16) ) );
[ [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 2, CF(5) ],
  [ 1, NF(40,[ 1, 31 ]), 8, [ 2, 7, 0 ] ] ]
]]>
</Example>
         
      </Description>
</ManSection>

The interpretation of the previous example gives rise to the following 
<E>Wedderburn decompositions</E> (<Ref Sect="WedDec" />), where <M>D_{16}</M> is 
the dihedral group of order 16 and <M>\xi_5</M> is a primitive 
<M>5</M>-th root of unity.
  <Display>
  &QQ; D_{16} = 4 &QQ; \oplus M_2( &QQ; ) \oplus M_2( &QQ; (\sqrt{2})).  
  </Display>
  <Display>
  &QQ; (\xi_5) D_{16} = 4 &QQ; (\xi_5) \oplus 
                 M_2( &QQ; (\xi_5)) \oplus 
                 M_2( &QQ; (\xi_5,\sqrt{2})).  
  </Display>

<Example>
<![CDATA[
gap> F:=FreeGroup("a","b");;a:=F.1;;b:=F.2;;rel:=[a^8,a^4*b^2,b^-1*a*b*a];;
gap> Q16:=F/rel;; QQ16:=GroupRing( Rationals, Q16 );;
gap> QS4:=GroupRing( Rationals, SymmetricGroup(4) );;
gap> WedderburnDecomposition(QQ16);
[ Rationals, Rationals, Rationals, Rationals, ( Rationals^[ 2, 2 ] ),
  <crossed product with center NF(8,[ 1, 7 ]) over AsField( NF(8,
    [ 1, 7 ]), CF(8) ) of a group of size 2> ]
gap> WedderburnDecomposition( QS4 );
[ Rationals, Rationals, ( Rationals^[ 3, 3 ] ), ( Rationals^[ 3, 3 ] ),
  <crossed product with center Rationals over CF(3) of a group of size 2> ]
gap> WedderburnDecompositionInfo(QQ16);
[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], 
  [ 2, Rationals ], [ 1, NF(8,[ 1, 7 ]), 8, [ 2, 7, 4 ] ] ]
gap> WedderburnDecompositionInfo(QS4);  
[ [ 1, Rationals ], [ 1, Rationals ], [ 3, Rationals ], [ 3, Rationals ], 
  [ 1, Rationals, 3, [ 2, 2, 0 ] ] ]
]]>
</Example>

In the previous example we computed the Wedderburn decomposition of the 
rational group algebra <M>&QQ; Q_{16}</M> of the quaternion group of order <M>16</M> 
and the rational group algebra <M>&QQ; S_{4}</M> of the symmetric group on four letters.
For the two group algebras we used both <Ref Attr="WedderburnDecomposition" /> and 
<Ref Attr="WedderburnDecompositionInfo" />. <P/>

The output of <Ref Attr="WedderburnDecomposition" /> shows that 
  <Display>
  &QQ; Q_{16} = 4 &QQ; \oplus M_2( &QQ; ) \oplus A,
  </Display>
  <Display>
  &QQ; S_{4} = 2 &QQ; \oplus 2 M_3( &QQ; ) \oplus B,
  </Display>
where <M>A</M> and <M>B</M> are <E>crossed products</E> (<Ref Sect="CrossedProd" />)
with coefficients in the 
cyclotomic fields <M>&QQ; (\xi_8)</M> and <M>&QQ; (\xi_3)</M> respectively. 
This output can be used as a &GAP; object, but it does not give clear 
information on the structure of the algebras <M>A</M> and <M>B</M>. <P/>

The numerical information displayed by 
<Ref Attr="WedderburnDecompositionInfo" /> means that 
  <Display>
  A = &QQ; (\xi|\xi^8=1)[g | \xi^g = \xi^7 = \xi^{-1}, g^2 = \xi^4 = -1],
  </Display>
  <Display>
  B = &QQ; (\xi|\xi^3=1)[g | \xi^g = \xi^2 = \xi^{-1}, g^2 = 1].
  </Display>
Both <M>A</M> and <M>B</M> are quaternion algebras over its centre which is
<M>&QQ; (\xi+\xi^{-1})</M> and the former is equal to <M>&QQ; (\sqrt{2})</M> and 
<M>&QQ;</M> respectively. <P/>  

In <M>B</M>, one has <M>(g+1)(g-1)=0</M>, while <M>g</M> is neither <M>1</M> nor 
<M>-1</M>. This shows that <M>B=M_2( &QQ; )</M>. 
However the relation <M>g^2=-1</M> in <M>A</M> shows that 
  <Display>
  A=&QQ; (\sqrt{2})[i,g|i^2=g^2=-1,ig=-gi]
  </Display>
and so <M>A</M> is a division algebra with centre <M>&QQ; (\sqrt{2})</M>, which is a 
subalgebra of the algebra of Hamiltonian quaternions. 
This could be deduced also using well known methods on cyclic algebras (see
e.g. <Cite Key="R" />).
<P/>

The next example shows the output of <C>WedderburnDecompositionInfo</C> 
for <M>&QQ; G</M> and <M>&QQ; (\xi_3) G</M>, where <M>G=SmallGroup(48,15)</M>. 
The user can compare it with the 
output of <Ref Attr="WedderburnDecomposition" /> for the same group in the 
previous section. Notice that the last entry of the 
<E>Wedderburn decomposition</E> (<Ref Sect="WedDec" />)
of <M>&QQ; G</M> is not given as a matrix algebra of a cyclic algebra. 
However, the corresponding entry of <M>&QQ; (\xi_3) G</M> is a matrix algebra of a cyclic algebra.

<Example>
<![CDATA[
gap> WedderburnDecompositionInfo( GroupRing( Rationals, SmallGroup(48,15) ) );
[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals ],
  [ 2, Rationals ], [ 1, Rationals, 3, [ 2, 2, 0 ] ], [ 2, CF(3) ],
  [ 1, Rationals, 6, [ 2, 5, 0 ] ], [ 1, NF(8,[ 1, 7 ]), 8, [ 2, 7, 0 ] ],
  [ 1, Rationals, 12, [ [ 2, 5, 9 ], [ 2, 7, 0 ] ], [ [ 9 ] ] ] ]
gap> WedderburnDecompositionInfo( GroupRing( CF(3), SmallGroup(48,15) ) );
[ [ 1, CF(3) ], [ 1, CF(3) ], [ 1, CF(3) ], [ 1, CF(3) ], [ 2, CF(3) ],
  [ 2, CF(3), 3, [ 1, 1, 0 ] ], [ 2, CF(3) ], [ 2, CF(3) ],
  [ 2, CF(3), 6, [ 1, 1, 0 ] ], [ 1, NF(24,[ 1, 7 ]), 8, [ 2, 7, 0 ] ],
  [ 2, CF(3), 12, [ 2, 7, 0 ] ] ]
]]>
</Example>


In some cases some of the first entries of the output of 
<Ref Attr="WedderburnDecompositionInfo" /> are not integers and so the correspoding
<E>Wedderburn components</E> (<Ref Sect="WedDec" />) are given as 
"fractional matrix algebras" of <E>cyclotomic algebras</E> 
(<Ref Sect="Cyclotomic" />). 
See <Ref Sect="WedDec" /> for a theoretical explanation of this 
phenomenon. In that case a warning message will be displayed during 
the first call of <C>WedderburnDecompositionInfo</C>.


<Example>
<![CDATA[
gap> QG:=GroupRing(Rationals,SmallGroup(240,89));
<algebra-with-one over Rationals, with 2 generators>
gap> WedderburnDecompositionInfo(QG);
Wedderga: Warning!!! 
Some of the Wedderburn components displayed are FRACTIONAL MATRIX ALGEBRAS!!!

[ [ 1, Rationals ], [ 1, Rationals ], [ 1, Rationals, 10, [ 4, 3, 5 ] ],
  [ 4, Rationals ], [ 4, Rationals ], [ 5, Rationals ], [ 5, Rationals ],
  [ 6, Rationals ], [ 1, NF(12,[ 1, 11 ]), 10, [ 4, 3, 5 ] ],
  [ 3/2, NF(8,[ 1, 7 ]), 10, [ 4, 3, 5 ] ] ]
]]>
</Example>


The interpretation of the output in the previous example gives rise to 
the following <E>Wedderburn decomposition</E> (<Ref Sect="WedDec" />) 
of <M>&QQ; G</M> for <M>G</M> the small group <M>[240,89]</M>:
    <Display>
    &QQ; G = 2 &QQ; \oplus 2 M_4( &QQ; ) \oplus 
           2 M_5( &QQ; ) \oplus M_6( &QQ; ) \oplus A \oplus B \oplus C
    </Display>
where 
    <Display>
    A = &QQ; (\xi_{10})[u|\xi_{10}^u = \xi_{10}^3, u^4 = -1],
    </Display>
<M>B</M> is an algebra of degree <M>(4*2 )/2  = 4 </M> which is 
<E>Brauer equivalent</E> (<Ref Sect="Brauer" />) to 
    <Display>
    B_1 = &QQ; (\xi_{60})[u,v|\xi_{60}^u = \xi_{60}^{13}, 
                          u^4 = \xi_{60}^5, 
                          \xi_{60}^v = \xi_{60}^{11}, v^2 = 1, vu=uv],
    </Display>
and <M>C</M> is an algebra of degree <M>(4*2)*3/4  = 6 </M> which is 
<E>Brauer equivalent</E> (<Ref Sect="Brauer" />) to 
    <Display>
    C_1 = &QQ; (\xi_{60})[u,v|\xi_{60}^u = \xi_{60}^7, 
                          u^4 = \xi_{60}^5, 
                          \xi_{60}^v = \xi_{60}^{31}, v^2 = 1, vu=uv].
    </Display>
The precise description of <M>B</M> and <M>C</M> requires 
the usage of "ad hoc" arguments.

</Section>

<!-- ********************************************************* -->

<Section Label="DecompSimple">
<Heading>Simple quotients</Heading>


<ManSection>
   <Oper Name="SimpleAlgebraByCharacter" 
         Arg="FG chi"  
         Comm="The Wedderburn component of the group algebra FG 
         determined by the irreducible character chi" />
   <Returns>
         A simple algebra.
   </Returns>
   <Description>
        The first input <A>FG</A> should be a <E>semisimple group algebra</E>
        (<Ref Sect="Semisimple" />) over a finite group <M>G</M> and the 
        second input should be an irreducible character of <M>G</M>.<P/>
        
        The output is a matrix algebra of a <E>cyclotomic algebras</E> 
        (<Ref Sect="Cyclotomic" />) which is isomorphic to the unique
        <E>Wedderburn component</E> (<Ref Sect="WedDec" />) 
        <M>A</M> of <A>FG</A> such that <M>\chi(A)\ne 0</M>.
        
<Example>
<![CDATA[
gap> A5 := AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> SimpleAlgebraByCharacter( GroupRing( Rationals , A5 ) , Irr( A5 ) [3] );
( NF(5,[ 1, 4 ])^[ 3, 3 ] )
gap> SimpleAlgebraByCharacter( GroupRing( GF(7) , A5 ) , Irr( A5 ) [3] );
( GF(7^2)^[ 3, 3 ] )
gap> G:=SmallGroup(128,100);
<pc group of size 128 with 7 generators>
gap> SimpleAlgebraByCharacter( GroupRing( Rationals , G ) , Irr(G)[19] );
<crossed product with center NF(8,[ 1, 3 ]) over AsField( NF(8,[ 1, 3 ]), CF(
8) ) of a group of size 2>
]]>
</Example>
        
   </Description>
</ManSection>

<!-- ************************ -->

<ManSection>
   <Oper Name="SimpleAlgebraByCharacterInfo" 
         Arg="FG chi"  
         Comm="The numerical data describing the output of
         SimpleAlgebraByCharacter" />
   <Returns>
         The numerical description of the output of <Ref Attr="SimpleAlgebraByCharacter" />.
   </Returns>
   <Description>
        The first input <A>FG</A> is a <E>semisimple group algebra</E> 
        (<Ref Sect="Semisimple" />) over a finite group 
        <M>G</M> and the second input is an irreducible character of <M>G</M>. 
        <P/>
        
        The output is the numerical description <Ref Sect="NumDesc" /> of 
        the <E>cyclotomic algebra</E> (<Ref Sect="Cyclotomic" />) 
        which is isomorphic to the unique <E>Wedderburn component</E> 
        (<Ref Sect="WedDec" />) <M>A</M> of <A>FG</A> 
        such that <M>\chi(A)\ne 0</M>. <P/>
        
        See <Ref Sect="NumDesc" /> for the interpretation of the numerical 
        information given by the output.

<Example>
<![CDATA[
gap> G:=SmallGroup(144,11);
<pc group of size 144 with 6 generators>
gap> QG:=GroupRing(Rationals,G);
<algebra-with-one over Rationals, with 6 generators>
gap> SimpleAlgebraByCharacter( QG , Irr(G)[48] );
<crossed product with center NF(36,[ 1, 17 ]) over AsField( NF(36,
[ 1, 17 ]), CF(36) ) of a group of size 2>
gap> SimpleAlgebraByCharacterInfo( QG , Irr(G)[48] );
[ 1, NF(36,[ 1, 17 ]), 36, [ 2, 17, 18 ] ]
]]>
</Example>

   </Description>
</ManSection>

<!-- ************************ -->

<ManSection>
   <Oper Name="SimpleAlgebraByStrongSP" 
         Label="for rational group algebra"
         Arg="QG K H"  
         Comm="The Wedderburn component of the rational group algebra QG 
         realized by (K,H), a strong Shoda pair of G" />
   <Oper Name="SimpleAlgebraByStrongSPNC" 
         Label="for rational group algebra"
         Arg="QG K H"  
         Comm="Same as the non NC version without checking that (K,H) is a 
         strong Shoda pair of G" />
   <Oper Name="SimpleAlgebraByStrongSP" 
         Label="for semisimple finite group algebra"
         Arg="FG K H C"  
         Comm="The Wedderburn component of the semisimple finite group algebra 
         FG given realized by (K,H), a strong Shoda pair of G, and a 
         q-cyclotomic class" />
   <Oper Name="SimpleAlgebraByStrongSPNC" 
         Label="for semisimple finite group algebra"
         Arg="FG K H C"  
         Comm="Same as the non NC version without checking that (K,H) is a 
         strong Shoda pair of G" />
   <Returns>
         A simple algebra.
   </Returns>
   <Description>
        In the three-argument version the input must be formed by a 
        <E>semisimple rational group algebra</E> <A>QG</A>
        (see <Ref Sect="Semisimple" />) and two subgroups <A>K</A> 
        and <A>H</A> of <M>G</M> which form a <E>strong Shoda 
        pair</E> (<Ref Sect="SSPDef" />) of <M>G</M>. <P/>
        
        The three-argument version
        returns the Wedderburn component (<Ref Sect="WedDec" />) 
        of the rational group algebra <A>QG</A> 
        realized by the strong Shoda pair (<A>K</A>,<A>H</A>).
        <P/>
        
        In the four-argument version the first argument is a semisimple 
        finite group algebra <A>FG</A>, <A>(K,H)</A> is a strong Shoda 
        pair of <M>G</M> and the fourth input data is either 
        a generating <M>q</M>-cyclotomic class 
        modulo the index of <A>H</A> in <A>K</A>  
        or a representative of a
        generating <M>q</M>-cyclotomic class 
        modulo the index of <A>H</A> in <A>K</A>  
        (see <Ref Sect="CyclotomicClass" />). <P/> 
        
        The four-argument version
        returns the Wedderburn component (<Ref Sect="WedDec" />) of the 
        finite group algebra <A>FG</A> 
        realized by the strong Shoda pair (<A>K</A>,<A>H</A>) 
        and the cyclotomic class <A>C</A> 
        (or the cyclotomic class containing <A>C</A>). <P/>
               
        The versions ending in NC do not check if (<A>K</A>,<A>H</A>) is a 
        strong Shoda pair of <M>G</M>. 
        In the four-argument version it is also not checked whether <A>C</A> is 
        either a generating <M>q</M>-cyclotomic class modulo the index of <A>H</A> in 
        <A>K</A> or an integer coprime to the index of <A>H</A> in 
        <A>K</A>.

<Example>
<![CDATA[
gap> F:=FreeGroup("a","b");; a:=F.1;; b:=F.2;;
gap> G:=F/[ a^16, b^2*a^8, b^-1*a*b*a^9 ];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup(G,[a]);; H:=Subgroup(G,[]);;
gap> QG:=GroupRing( Rationals, G );;
gap> FG:=GroupRing( GF(7), G );;
gap> SimpleAlgebraByStrongSP( QG, K, H );
<crossed product over CF(16) of a group of size 2>
gap> SimpleAlgebraByStrongSP( FG, K, H, [1,7] );
( GF(7)^[ 2, 2 ] )
gap> SimpleAlgebraByStrongSP( FG, K, H, 1 );
( GF(7)^[ 2, 2 ] )
]]>
</Example>

   </Description>
</ManSection>

<!-- ************************ -->

<ManSection>
   <Oper Name="SimpleAlgebraByStrongSPInfo" 
         Label="for rational group algebra"   
         Arg="QG K H"  
         Comm="The numerical data describing the output of SimpleAlgebraByStrongSP" />
   <Oper Name="SimpleAlgebraByStrongSPInfoNC" 
         Label="for rational group algebra"
         Arg="QG K H"  
         Comm="The numerical data describing the output of SimpleAlgebraByStrongSPNC" />
   <Oper Name="SimpleAlgebraByStrongSPInfo" 
         Label="for semisimple finite group algebra"
         Arg="FG K H C"  
         Comm="The numerical data describing the output of SimpleAlgebraByStrongSP" />
   <Oper Name="SimpleAlgebraByStrongSPInfoNC" 
         Label="for semisimple finite group algebra"
         Arg="FG K H C"  
         Comm="The numerical data describing the output of SimpleAlgebraByStrongSPNC" /> 
   <Returns>
         A numerical description of one simple algebra.
   </Returns>
   <Description>
        In the three-argument version the input must be formed by a 
        <E>semisimple rational group algebra</E> 
        (<Ref Sect="Semisimple" />) <A>QG</A> and two subgroups <A>K</A> 
        and <A>H</A> of <M>G</M> which form a <E>strong Shoda pair</E> 
        (<Ref Sect="SSPDef" />) of <M>G</M>. 
        It returns the numerical information describing the Wedderburn component 
        (<Ref Sect="NumDesc" />) of the rational group algebra <A>QG</A> 
        realized by a the strong Shoda pair (<A>K</A>,<A>H</A>). <P/>
        
        In the four-argument version the first input is a semisimple finite 
        group algebra <A>FG</A>, <A>(K,H)</A> is a strong Shoda pair of 
        <M>G</M> and the fourth input data is either 
        a generating <M>q</M>-cyclotomic class modulo the index of <A>H</A> in 
        <A>K</A>  
        or a representative of a generating <M>q</M>-cyclotomic class modulo 
        the index of <A>H</A> in 
        <A>K</A>  (<Ref Sect="CyclotomicClass" />). 
        It returns a pair of positive integers <M>[n,r]</M> which represent 
        the <M>n\times n</M> matrix algebra over the field of order 
        <M>r</M> which is isomorphic to the Wedderburn component of <A>FG</A> 
        realized by a the strong Shoda pair (<A>K</A>,<A>H</A>) and the 
        cyclotomic class <A>C</A> 
        (or the cyclotomic class containing the integer <A>C</A>). <P/>
               
        The versions ending in NC do not check if (<A>K</A>,<A>H</A>) is a 
        strong Shoda pair of <M>G</M>. 
        In the four-argument version it is also not checked whether <A>C</A> is 
        either a generating <M>q</M>-cyclotomic class 
        modulo the index of <A>H</A> in 
        <A>K</A>  or an integer coprime with the index of <A>H</A> in 
        <A>K</A>.   

<Example>
<![CDATA[
gap> F:=FreeGroup("a","b");; a:=F.1;; b:=F.2;;
gap> G:=F/[ a^16, b^2*a^8, b^-1*a*b*a^9 ];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup(G,[a]);; H:=Subgroup(G,[]);; 
gap> QG:=GroupRing( Rationals, G );;
gap> FG:=GroupRing( GF(7), G );;
gap> SimpleAlgebraByStrongSP( QG, K, H );
<crossed product over CF(16) of a group of size 2>
gap> SimpleAlgebraByStrongSPInfo( QG, K, H );
[ 1, NF(16,[ 1, 7 ]), 16, [ [ 2, 7, 8 ] ], [  ] ]
gap> SimpleAlgebraByStrongSPInfo( FG, K, H, [1,7] );
[ 2, 7 ]
gap> SimpleAlgebraByStrongSPInfo( FG, K, H, 1 );
[ 2, 7 ]
]]>
</Example>

   </Description>
</ManSection>

</Section>


</Chapter>