Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 6911af3fc82cf758634776a159d4f34f > files > 108

libntl-devel-5.5.2-2mdv2010.0.i586.rpm



/**************************************************************************\

MODULE: ZZ_p

SUMMARY:

The class ZZ_p is used to represent integers mod p.  The modulus p may
be any positive integer, not necessarily prime.  


Objects of the class ZZ_p are represented as a ZZ in the range 0..p-1.

An executing program maintains a "current modulus", which is set to p
with ZZ_p::init(p).  The current modulus should be initialized before
any ZZ_p objects are created.

The modulus may be changed, and a mechanism is provided for saving and
restoring a modulus (see classes ZZ_pBak and ZZ_pContext below).

\**************************************************************************/

#include <NTL/ZZ.h>
#include <NTL/ZZVec.h>

class ZZ_p {
public:
   
   ZZ_p(); // initialize to 0

   ZZ_p& operator=(const ZZ_p& a); // assignment
   ZZ_p& operator=(long a); // assignment

   ZZ_p(const ZZ_p& a); // copy constructor


   ~ZZ_p(); // destructor

   static void init(const ZZ& p);
   // ZZ_p::init(p) sets the modulus to p (p > 1)
   
   static const ZZ& modulus();
   // ZZ_p::modulus() yields read-only reference to the current
   // modulus
};


/**************************************************************************\

                      Access to representation

\**************************************************************************/


const ZZ& rep(const ZZ_p& a); 
// read-only access to representation of a

/****** Example: ********  

   ZZ x;
   ZZ_p a;

   x = rep(a);

*************************/


/**************************************************************************\

                                  Comparison

\**************************************************************************/


long operator==(const ZZ_p& a, const ZZ_p& b);
long operator!=(const ZZ_p& a, const ZZ_p& b);

// PROMOTIONS: the comparison operators provide promotions
// from long to ZZ_p on (a, b)

long IsZero(const ZZ_p& a);  // test for 0
long IsOne(const ZZ_p& a);  // test for 1


/**************************************************************************\

                                    Addition 

\**************************************************************************/

// operator notation:

ZZ_p operator+(const ZZ_p& a, const ZZ_p& b);
ZZ_p operator-(const ZZ_p& a, const ZZ_p& b);
ZZ_p operator-(const ZZ_p& a); // unary -

ZZ_p& operator+=(ZZ_p& x, const ZZ_p& b);
ZZ_p& operator+=(ZZ_p& x, long b);

ZZ_p& operator-=(ZZ_p& x, const ZZ_p& b);
ZZ_p& operator-=(ZZ_p& x, long b);

ZZ_p& operator++(ZZ_p& x);  // prefix
void operator++(ZZ_p& x, int);  // postfix

ZZ_p& operator--(ZZ_p& x);  // prefix
void operator--(ZZ_p& x, int);  // postfix

// procedural versions:


void add(ZZ_p& x, const ZZ_p& a, const ZZ_p& b); // x = a + b
void sub(ZZ_p& x, const ZZ_p& a, const ZZ_p& b); // x = a - b 
void negate(ZZ_p& x, const ZZ_p& a); // x = -a

// PROMOTIONS: binary +, - and procedures add, sub provide promotions
// from long to ZZ_p on (a, b)


/**************************************************************************\

                                  Multiplication 

\**************************************************************************/

// operator notation:

ZZ_p operator*(const ZZ_p& a, const ZZ_p& b);

ZZ_p& operator*=(ZZ_p& x, const ZZ_p& b);
ZZ_p& operator*=(ZZ_p& x, long b);

// procedural versions:


void mul(ZZ_p& x, const ZZ_p& a, const ZZ_p& b); // x = a * b

void sqr(ZZ_p& x, const ZZ_p& a); // x = a^2
ZZ_p sqr(const ZZ_p& a); // x = a^2

// PROMOTIONS: operator * and procedure mul provide promotions 
// from long to ZZ_p on (a, b)



/**************************************************************************\

                              Division

\**************************************************************************/


// operator notation:

ZZ_p operator/(const ZZ_p& a, const ZZ_p& b);

ZZ_p& operator/=(ZZ_p& x, const ZZ_p& b);
ZZ_p& operator/=(ZZ_p& x, long b);


// procedural versions:


void div(ZZ_p& x, const ZZ_p& a, const ZZ_p& b);
// x = a/b.

// By default, if b is not invertible, an error is raised.  However,
// one can override this default behavior by defining an error handler
// void H(const ZZ_p& b), and setting ZZ_p::DivHandler = H.  Then if b
// != 0 and b is not invertible, the function H is invoked with b as
// its argument.  When this happens, p is of course not prime, and
// GCD(p, rep(b)) is a nontrivial factor.

void inv(ZZ_p& x, const ZZ_p& a); // x = 1/a
ZZ_p inv(const ZZ_p& a); 

// Error handling is the same as above.

// PROMOTIONS: operator / and procedure div provide promotions
// from long to ZZ_p on (a, b)



/**************************************************************************\

                            Exponentiation

\**************************************************************************/



void power(ZZ_p& x, const ZZ_p& a, const ZZ& e); // x = a^e (e may be negative)
ZZ_p power(const ZZ_p& a, const ZZ& e); // functional variants

void power(ZZ_p& x, const ZZ_p& a, long e); 
ZZ_p power(ZZ_p& x, const ZZ_p& a, long e); 



/**************************************************************************\

                               Random Elements

\**************************************************************************/


void random(ZZ_p& x);
ZZ_p random_ZZ_p();
// x = random element in ZZ_p.  


/**************************************************************************\

                                Input/Output

\**************************************************************************/


ostream& operator<<(ostream& s, const ZZ_p& a);

istream& operator>>(istream& s, ZZ_p& x);
// a ZZ is read and reduced mod p

/**************************************************************************\

                       Modulus Switching 

A class ZZ_pBak is provided for "backing up" the current modulus.

Here is what you do to save the current modulus, temporarily
set it to something new, and then restore it:

   ZZ_pBak bak;
   bak.save();   // save current modulus (if any)

   ZZ_p::init(p);  // set modulus to desired value p

      // ...

   bak.restore(); // restore old modulus (if any)

Note that between the save and restore, you may have several calls to
ZZ_p::init, each of which simply clobbers the previous modulus.

The ZZ_pBak interface is good for implementing simple stack-like
modulus "context switching".  For more general context switching,
see ZZ_pContext below.

..........................................................................

When the current modulus is changed, there may be extant
ZZ_p objects. If the old modulus was saved and then later restored, 
these objects can be used again as if the modulus had never changed.  
Note, however, that if a ZZ_p object is created under one modulus 
and then used in any way (except destroyed) under another, 
program behavior is not predictable.  This condition is not
explicitly checked for, but an error is likely to be raised.
One should also not presume that things will work properly
if the modulus is changed, but its value happens to be the same---
one should restore the same "context", from either a ZZ_pBak
or a ZZ_pContext object.

\**************************************************************************/


class ZZ_pBak {
public:

   // To describe this logic, think of a ZZ_pBak object
   // of having two components: a modulus q (possibly "null") and 
   // an "auto-restore bit" b.

   // There is also a global current modulus p (initially "null").

   ZZ_pBak();  // q = "null", b = 0

   ~ZZ_pBak();  // if (b) p = q

   void save();  // q = p, b = 1 
   void restore();  // p = q, b = 0


private:
   ZZ_pBak(const ZZ_pBak&);  // copy disabled
   void operator=(const ZZ_pBak&);  // assignment disabled
};


// more general context switching:

class ZZ_pContext {

// A ZZ_pContext object has a modulus q (possibly "null"),
// but has no auto-restore bit like a ZZ_pBak object.
// However, these objects can be initialized and copied with
// complete generality.

// As above, p is the current global modulus (initially "null")

public:

ZZ_pContext(); // q = "null"
ZZ_pContext(const ZZ& new_q); // q = new_q

void save(); // q = p
void restore() const; // p = q

ZZ_pContext(const ZZ_pContext&);  // copy
ZZ_pContext& operator=(const ZZ_pContext&); // assignment
~ZZ_pContext(); // destructor


};



/**************************************************************************\

                               Miscellany

\**************************************************************************/

void clear(ZZ_p& x); // x = 0
void set(ZZ_p& x); // x = 1

static long ZZ_p::ModulusSize();
//  ZZ_p::ModulusSize() returns ZZ_p::modulus().size()

static const ZZ_p& ZZ_p::zero();
// ZZ_p::zero() yields a read-only reference to zero

void swap(ZZ_p& x, ZZ_p& y);
// swap x and y (done by "pointer swapping", if possible).