Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 1112

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (Forms) - Chapter 2: Examples</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>


<div class="pcenter"><table class="chlink"><tr><td class="chlink1">Goto Chapter: </td><td><a href="chap0.html">Top</a></td><td><a href="chap1.html">1</a></td><td><a href="chap2.html">2</a></td><td><a href="chap3.html">3</a></td><td><a href="chap4.html">4</a></td><td><a href="chapBib.html">Bib</a></td><td><a href="chapInd.html">Ind</a></td></tr></table><br /></div>
<p><a id="s0ss0" name="s0ss0"></a></p>

<h3>2. Examples</h3>

<p>Here we give some simple examples that display some of the functionality of <strong class="pkg">Forms</strong>.</p>

<p><a id="s1ss0" name="s1ss0"></a></p>

<h4>2.1 A conic of PG(2,8)</h4>

<p>Consider the three-dimensional vector space V=GF(8)^3 over GF(8), and consider the following quadratic polynomial in 3 variables:</p>

<p class="pcenter">\[
x_1^2+x_2x_3.
 \]</p>

<p>Then this polynomial defines a quadratic form in V and the zeros form a <em>conic</em> of the associated projective plane. So in particular, our quadratic form defines a degenerate parabolic quadric of Witt Index 1. We will see now how we can use <strong class="pkg">Forms</strong> to view this example.</p>


<table class="example">
<tr><td><pre>

gap&gt; gf := GF(8);
GF(2^3)
gap&gt; vec := gf^3;
( GF(2^3)^3 )
gap&gt; r := PolynomialRing( gf, 3 );
GF(2^3)[x_1,x_2,x_3]
gap&gt; poly := r.1^2 + r.2 * r.3;
x_1^2+x_2*x_3
gap&gt; form := QuadraticFormByPolynomial( poly, r );
&lt; quadratic form &gt;
gap&gt; Display( form );
Quadratic form
Gram Matrix:
 1 . .
 . . 1
 . . .
Polynomial: x_1^2+x_2*x_3
gap&gt; IsDegenerateForm( form );
true
gap&gt; WittIndex( form );
1
gap&gt; IsParabolicForm( form );
true
gap&gt; RadicalOfForm( form );
&lt;vector space of dimension 1 over GF(2^3)&gt;

</pre></td></tr></table>

<p>Now our conic is stabilised by GO(3,8), but not the same GO(3,8) that is installed in GAP. However, our conic is the canonical conic given in <strong class="pkg">Forms</strong>.</p>


<table class="example">
<tr><td><pre>

gap&gt; canonical := IsometricCanonicalForm( form );
&lt; quadratic form &gt;
gap&gt; form = canonical;
true

</pre></td></tr></table>

<p>So we ``change forms''...</p>


<table class="example">
<tr><td><pre>

gap&gt; go := GO(3,8);
GO(0,3,8)
gap&gt; mat := InvariantQuadraticForm( go )!.matrix;
[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2) ], 
[ 0*Z(2), Z(2)^0, 0*Z(2) ] ]
gap&gt; gapform := QuadraticFormByMatrix( mat, GF(8) );
&lt; quadratic form &gt;
gap&gt; b := BaseChangeToCanonical( gapform );
[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ], 
[ 0*Z(2), 0*Z(2), Z(2)^0 ]  ]
gap&gt; hom := BaseChangeHomomorphism( b, GF(8) );
^[ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ], 
[ 0*Z(2), 0*Z(2), Z(2)^0 ] ]
gap&gt; newgo := Image(hom, go);
Group([ [ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2^3), 0*Z(2) ], 
[ 0*Z(2), 0*Z(2), Z(2^3)^6 ] ],  [ [ Z(2)^0, 0*Z(2), 0*Z(2) ], 
[ Z(2)^0, Z(2)^0, Z(2)^0 ], [ 0*Z(2), Z(2)^0, 0*Z(2) ] ] ])

</pre></td></tr></table>

<p>Now we look at the action of our new GO(3,8) on the conic.</p>


<table class="example">
<tr><td><pre>

gap&gt; conic := Filtered(vec, x -&gt; IsZero( x^form ));;
gap&gt; Size( conic );
64
gap&gt; orbs := Orbits(newgo, conic, OnRight);;
gap&gt; List(orbs, Size);
[ 1, 63 ]

</pre></td></tr></table>

<p>So we see that there is a fixed point, which is actually the <em>nucleus</em> of the conic, or in other words, the radical of the form.</p>

<p><a id="s2ss0" name="s2ss0"></a></p>

<h4>2.2 A form for W(5,3)</h4>

<p>The symplectic polar space W(5,q) is defined by an alternating reflexive bilinear form on the six-dimensional vector space GF(q)^6. Any invertible 6times 6 matrix A which satisfies A+A^T=0 is a candidate for the Gram matrix of a symplectic polarity. The canonical form we adopt in <strong class="pkg">Forms</strong> for an alternating form is</p>

<p class="pcenter">\[f(x,y)=x_1y_2-x_2y_1+x_3y_4-x_4y_3\cdots+x_{2n-1}y_{2n}-x_{2n}y_{2n-1}. \]</p>


<table class="example">
<tr><td><pre>

gap&gt; f := GF(3);
GF(3)
gap&gt; gram := [
[0,0,0,1,0,0], 
[0,0,0,0,1,0],
[0,0,0,0,0,1],
[-1,0,0,0,0,0],
[0,-1,0,0,0,0],
[0,0,-1,0,0,0]] * One(f);;
gap&gt; form := BilinearFormByMatrix( gram, f );
&lt; bilinear form &gt;
gap&gt; IsSymplecticForm( form );
true
gap&gt; Display( form );
Bilinear form
Gram Matrix:
 . . . 1 . .
 . . . . 1 .
 . . . . . 1
 2 . . . . .
 . 2 . . . .
 . . 2 . . .
gap&gt; b := BaseChangeToCanonical( form );;
gap&gt; Display( b );
 . . . . . 1
 . . 2 . . .
 . . . . 1 .
 . 2 . . . .
 . . . 1 . .
 2 . . . . .
gap&gt; Display( b * gram * TransposedMat(b) );
 . 1 . . . .
 2 . . . . .
 . . . 1 . .
 . . 2 . . .
 . . . . . 1
 . . . . 2 .

</pre></td></tr></table>


<div class="pcenter">
<table class="chlink"><tr><td><a href="chap0.html">Top of Book</a></td><td><a href="chap1.html">Previous Chapter</a></td><td><a href="chap3.html">Next Chapter</a></td></tr></table>
<br />


<div class="pcenter"><table class="chlink"><tr><td class="chlink1">Goto Chapter: </td><td><a href="chap0.html">Top</a></td><td><a href="chap1.html">1</a></td><td><a href="chap2.html">2</a></td><td><a href="chap3.html">3</a></td><td><a href="chap4.html">4</a></td><td><a href="chapBib.html">Bib</a></td><td><a href="chapInd.html">Ind</a></td></tr></table><br /></div>

</div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>