Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 1398

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

  
  5. Generating Codes
  
  In this chapter we describe functions for generating codes.
  
  Section 5.1 describes functions for generating unrestricted codes.
  
  Section 5.2 describes functions for generating linear codes.
  
  Section  5.3  describes  functions  for constructing certain covering codes,
  such as the Gabidulin codes.
  
  Section 5.4 describes functions for constructing the Golay codes.
  
  Section 5.5 describes functions for generating cyclic codes.
  
  Section  5.6  describes  functions  for  generating codes as the image of an
  evaluation  map  applied  to  a space of functions. For example, generalized
  Reed-Solomon codes and toric codes are described there.
  
  Section 5.7 describes functions for generating algebraic geometry codes.
  
  Section  5.8  describes  functions for constructing low-density parity-check
  (LDPC) codes.
  
  
  5.1 Generating Unrestricted Codes
  
  In this section we start with functions that creating code from user defined
  matrices   or  special  matrices  (see  ElementsCode  (5.1-1),  HadamardCode
  (5.1-2),  ConferenceCode  (5.1-3)  and  MOLSCode  (5.1-4)).  These codes are
  unrestricted codes; they may later be discovered to be linear or cyclic.
  
  The  next  functions  generate random codes (see RandomCode (5.1-5)) and the
  Nordstrom-Robinson code (see NordstromRobinsonCode (5.1-6)), respectively.
  
  Finally,  we  describe  two functions for generating Greedy codes. These are
  codes  that  contructed  by gathering codewords from a space (see GreedyCode
  (5.1-7) and LexiCode (5.1-8)).
  
  5.1-1 ElementsCode
  
  > ElementsCode( L[, name], F ) _____________________________________function
  
  ElementsCode  creates an unrestricted code of the list of elements L, in the
  field  F.  L  must  be a list of vectors, strings, polynomials or codewords.
  name can contain a short description of the code.
  
  If  L  contains a codeword more than once, it is removed from the list and a
  GAP set is returned.
  
  ---------------------------  Example  ----------------------------
    gap> M := Z(3)^0 * [ [1, 0, 1, 1], [2, 2, 0, 0], [0, 1, 2, 2] ];;
    gap> C := ElementsCode( M, "example code", GF(3) );
    a (4,3,1..4)2 example code over GF(3)
    gap> MinimumDistance( C );
    4
    gap> AsSSortedList( C );
    [ [ 0 1 2 2 ], [ 1 0 1 1 ], [ 2 2 0 0 ] ]
  ------------------------------------------------------------------
  
  5.1-2 HadamardCode
  
  > HadamardCode( H[, t] ) ___________________________________________function
  
  The four forms this command can take are HadamardCode(H,t), HadamardCode(H),
  HadamardCode(n,t), and HadamardCode(n).
  
  In  the case when the arguments H and t are both given, HadamardCode returns
  a  Hadamard  code of the t^th kind from the Hadamard matrix H In case only H
  is given, t = 3 is used.
  
  By definition, a Hadamard matrix is a square matrix H with H* H^T = -n* I_n,
  where n is the size of H. The entries of H are either 1 or -1.
  
  The  matrix H is first transformed into a binary matrix A_n by replacing the
  1's by 0's and the -1's by 1s).
  
  The  Hadamard matrix of the first kind (t=1) is created by using the rows of
  A_n  as  elements,  after deleting the first column. This is a (n-1, n, n/2)
  code.  We  use  this  code for creating the Hadamard code of the second kind
  (t=2), by adding all the complements of the already existing codewords. This
  results  in  a  (n-1,  2n,  n/2 -1) code. The third kind (t=3) is created by
  using  the  rows  of A_n (without cutting a column) and their complements as
  elements.  This  way,  we  have  an  (n, 2n, n/2)-code. The returned code is
  generally an unrestricted code, but for n = 2^r, the code is linear.
  
  The  command  HadamardCode(n,t)  returns a Hadamard code with parameter n of
  the t^th kind. For the command HadamardCode(n), t=3 is used.
  
  When  called  in  these  forms, HadamardCode first creates a Hadamard matrix
  (see  HadamardMat (7.3-4)), of size n and then follows the same procedure as
  described  above.  Therefore  the same restrictions with respect to n as for
  Hadamard matrices hold.
  
  ---------------------------  Example  ----------------------------
    gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
    gap> HadamardCode( H4, 1 );
    a (3,4,2)1 Hadamard code of order 4 over GF(2)
    gap> HadamardCode( H4, 2 );
    a (3,8,1)0 Hadamard code of order 4 over GF(2)
    gap> HadamardCode( H4 );
    a (4,8,2)1 Hadamard code of order 4 over GF(2) 
    gap> H4 := [[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]];;
    gap> C := HadamardCode( 4 );
    a (4,8,2)1 Hadamard code of order 4 over GF(2)
    gap> C = HadamardCode( H4 );
    true 
  ------------------------------------------------------------------
  
  5.1-3 ConferenceCode
  
  > ConferenceCode( H ) ______________________________________________function
  
  ConferenceCode  returns  a  code  of length n-1 constructed from a symmetric
  'conference  matrix' H. A conference matrix H is a symmetric matrix of order
  n,  which  satisfies  H*  H^T  =  ((n-1)*  I,  with n = 2 mod 4. The rows of
  frac12(H+I+J),  frac12(-H+I+J),  plus the zero and all-ones vectors form the
  elements of a binary non-linear (n-1, 2n, (n-2)/2) code.
  
  GUAVA constructs a symmetric conference matrix of order n+1 (n= 1 mod 4) and
  uses  the  rows  of  that  matrix,  plus  the  zero and all-ones vectors, to
  construct a binary non-linear (n, 2(n+1), (n-1)/2)-code.
  
  ---------------------------  Example  ----------------------------
    gap> H6 := [[0,1,1,1,1,1],[1,0,1,-1,-1,1],[1,1,0,1,-1,-1],
    > [1,-1,1,0,1,-1],[1,-1,-1,1,0,1],[1,1,-1,-1,1,0]];;
    gap> C1 := ConferenceCode( H6 );
    a (5,12,2)1..4 conference code over GF(2)
    gap> IsLinearCode( C1 );
    false 
    gap> C2 := ConferenceCode( 5 );
    a (5,12,2)1..4 conference code over GF(2)
    gap> AsSSortedList( C2 );
    [ [ 0 0 0 0 0 ], [ 0 0 1 1 1 ], [ 0 1 0 1 1 ], [ 0 1 1 0 1 ], [ 0 1 1 1 0 ], 
      [ 1 0 0 1 1 ], [ 1 0 1 0 1 ], [ 1 0 1 1 0 ], [ 1 1 0 0 1 ], [ 1 1 0 1 0 ], 
      [ 1 1 1 0 0 ], [ 1 1 1 1 1 ] ]
  ------------------------------------------------------------------
  
  5.1-4 MOLSCode
  
  > MOLSCode( [n][,]q ) ______________________________________________function
  
  MOLSCode  returns an (n, q^2, n-1) code over GF(q). The code is created from
  n-2  'Mutually  Orthogonal  Latin Squares' (MOLS) of size q x q. The default
  for  n  is 4. GUAVA can construct a MOLS code for n-2 <= q. Here q must be a
  prime power, q > 2. If there are no n-2 MOLS, an error is signalled.
  
  Since  each  of  the n-2 MOLS is a qx q matrix, we can create a code of size
  q^2  by  listing  in  each  code  element  the  entries that are in the same
  position  in  each  of the MOLS. We precede each of these lists with the two
  coordinates that specify this position, making the word length become n.
  
  The MOLS codes are MDS codes (see IsMDSCode (4.3-7)).
  
  ---------------------------  Example  ----------------------------
    gap> C1 := MOLSCode( 6, 5 );
    a (6,25,5)3..4 code generated by 4 MOLS of order 5 over GF(5)
    gap> mols := List( [1 .. WordLength(C1) - 2 ], function( nr )
    >       local ls, el;
    >       ls := NullMat( Size(LeftActingDomain(C1)), Size(LeftActingDomain(C1)) );
    >       for el in VectorCodeword( AsSSortedList( C1 ) ) do
    >          ls[IntFFE(el[1])+1][IntFFE(el[2])+1] := el[nr + 2];
    >       od;
    >       return ls;
    >    end );;
    gap> AreMOLS( mols );
    true
    gap> C2 := MOLSCode( 11 );
    a (4,121,3)2 code generated by 2 MOLS of order 11 over GF(11) 
  ------------------------------------------------------------------
  
  5.1-5 RandomCode
  
  > RandomCode( n, M, F ) ____________________________________________function
  
  RandomCode  returns  a random unrestricted code of size M with word length n
  over  F. M must be less than or equal to the number of elements in the space
  GF(q)^n.
  
  The   function   RandomLinearCode   returns   a   random  linear  code  (see
  RandomLinearCode (5.2-12)).
  
  ---------------------------  Example  ----------------------------
    gap> C1 := RandomCode( 6, 10, GF(8) );
    a (6,10,1..6)4..6 random unrestricted code over GF(8)
    gap> MinimumDistance(C1);
    3
    gap> C2 := RandomCode( 6, 10, GF(8) );
    a (6,10,1..6)4..6 random unrestricted code over GF(8)
    gap> C1 = C2;
    false 
  ------------------------------------------------------------------
  
  5.1-6 NordstromRobinsonCode
  
  > NordstromRobinsonCode(  ) ________________________________________function
  
  NordstromRobinsonCode  returns a Nordstrom-Robinson code, the best code with
  word  length  n=16 and minimum distance d=6 over GF(2). This is a non-linear
  (16, 256, 6) code.
  
  ---------------------------  Example  ----------------------------
    gap> C := NordstromRobinsonCode();
    a (16,256,6)4 Nordstrom-Robinson code over GF(2)
    gap> OptimalityCode( C );
    0 
  ------------------------------------------------------------------
  
  5.1-7 GreedyCode
  
  > GreedyCode( L, d, F ) ____________________________________________function
  
  GreedyCode  returns  a  Greedy  code  with design distance d over the finite
  field  F.  The code is constructed using the greedy algorithm on the list of
  vectors  L. (The greedy algorithm checks each vector in L and adds it to the
  code  if  its distance to the current code is greater than or equal to d. It
  is obvious that the resulting code has a minimum distance of at least d.
  
  Greedy codes are often linear codes.
  
  The  function  LexiCode  creates  a  greedy  code from a basis instead of an
  enumerated list (see LexiCode (5.1-8)).
  
  ---------------------------  Example  ----------------------------
    gap> C1 := GreedyCode( Tuples( AsSSortedList( GF(2) ), 5 ), 3, GF(2) );
    a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
    gap> C2 := GreedyCode( Permuted( Tuples( AsSSortedList( GF(2) ), 5 ),
    >                         (1,4) ), 3, GF(2) );
    a (5,4,3..5)2 Greedy code, user defined basis over GF(2)
    gap> C1 = C2;
    false 
  ------------------------------------------------------------------
  
  5.1-8 LexiCode
  
  > LexiCode( n, d, F ) ______________________________________________function
  
  In  this  format,  Lexicode  returns  a  lexicode with word length n, design
  distance d over F. The code is constructed using the greedy algorithm on the
  lexicographically ordered list of all vectors of length n over F. Every time
  a  vector is found that has a distance to the current code of at least d, it
  is  added  to  the  code.  This  results,  obviously, in a code with minimum
  distance greater than or equal to d.
  
  Another syntax which one can use is LexiCode( B, d, F ). When called in this
  format,  LexiCode  uses  the  basis  B instead of the standard basis. B is a
  matrix of vectors over F. The code is constructed using the greedy algorithm
  on  the list of vectors spanned by B, ordered lexicographically with respect
  to B.
  
  Note that binary lexicodes are always linear.
  
  ---------------------------  Example  ----------------------------
    gap> C := LexiCode( 4, 3, GF(5) );
    a (4,17,3..4)2..4 lexicode over GF(5) 
    gap> B := [ [Z(2)^0, 0*Z(2), 0*Z(2)], [Z(2)^0, Z(2)^0, 0*Z(2)] ];;
    gap> C := LexiCode( B, 2, GF(2) );
    a linear [3,1,2]1..2 lexicode over GF(2) 
  ------------------------------------------------------------------
  
  The  function  GreedyCode  creates a greedy code that is not restricted to a
  lexicographical order (see GreedyCode (5.1-7)).
  
  
  5.2 Generating Linear Codes
  
  In  this  section  we  describe  functions  for constructing linear codes. A
  linear code always has a generator or check matrix.
  
  The  first  two  functions  generate  linear codes from the generator matrix
  (GeneratorMatCode  (5.2-1))  or  check  matrix  (CheckMatCode  (5.2-3)). All
  linear codes can be constructed with these functions.
  
  The  next functions we describe generate some well-known codes, like Hamming
  codes  (HammingCode (5.2-4)), Reed-Muller codes (ReedMullerCode (5.2-5)) and
  the    extended    Golay    codes   (ExtendedBinaryGolayCode   (5.4-2)   and
  ExtendedTernaryGolayCode (5.4-4)).
  
  A  large and powerful family of codes are alternant codes. They are obtained
  by  a  small  modification  of  the  parity  check matrix of a BCH code (see
  AlternantCode  (5.2-6), GoppaCode (5.2-7), GeneralizedSrivastavaCode (5.2-8)
  and SrivastavaCode (5.2-9)).
  
  Finally,  we  describe  a  function  for generating random linear codes (see
  RandomLinearCode (5.2-12)).
  
  5.2-1 GeneratorMatCode
  
  > GeneratorMatCode( G[, name], F ) _________________________________function
  
  GeneratorMatCode  returns a linear code with generator matrix G. G must be a
  matrix  over  finite  field  F.  name can contain a short description of the
  code.  The  generator  matrix  is the basis of the elements of the code. The
  resulting  code  has  word  length n, dimension k if G is a k x n-matrix. If
  GF(q) is the field of the code, the size of the code will be q^k.
  
  If  the generator matrix does not have full row rank, the linearly dependent
  rows are removed. This is done by the GAP function BaseMat and results in an
  equal  code.  The  generator  matrix  can  be  retrieved  with  the function
  GeneratorMat (see GeneratorMat (4.7-1)).
  
  ---------------------------  Example  ----------------------------
    gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
    gap> C1 := GeneratorMatCode( G, GF(3) );
    a linear [5,3,1..2]1..2 code defined by generator matrix over GF(3)
    gap> C2 := GeneratorMatCode( IdentityMat( 5, GF(2) ), GF(2) );
    a linear [5,5,1]0 code defined by generator matrix over GF(2)
    gap> GeneratorMatCode( List( AsSSortedList( NordstromRobinsonCode() ),
    > x -> VectorCodeword( x ) ), GF( 2 ) );
    a linear [16,11,1..4]2 code defined by generator matrix over GF(2)
    # This is the smallest linear code that contains the N-R code 
  ------------------------------------------------------------------
  
  5.2-2 CheckMatCodeMutable
  
  > CheckMatCodeMutable( H[, name], F ) ______________________________function
  
  CheckMatCodeMutable is the same as CheckMatCode except that the check matrix
  and generator matrix are mutable.
  
  5.2-3 CheckMatCode
  
  > CheckMatCode( H[, name], F ) _____________________________________function
  
  CheckMatCode  returns  a linear code with check matrix H. H must be a matrix
  over Galois field F. [name. can contain a short description of the code. The
  parity  check  matrix  is  the transposed of the nullmatrix of the generator
  matrix of the code. Therefore, c* H^T = 0 where c is an element of the code.
  If  H  is  a  rx  n-matrix,  the  code  has  word length n, redundancy r and
  dimension n-r.
  
  If the check matrix does not have full row rank, the linearly dependent rows
  are  removed.  This  is  done by the GAP function BaseMat. and results in an
  equal  code.  The  check  matrix can be retrieved with the function CheckMat
  (see CheckMat (4.7-2)).
  
  ---------------------------  Example  ----------------------------
    gap> G := Z(3)^0 * [[1,0,1,2,0],[0,1,2,1,1],[0,0,1,2,1]];;
    gap> C1 := CheckMatCode( G, GF(3) );
    a linear [5,2,1..2]2..3 code defined by check matrix over GF(3)
    gap> CheckMat(C1);
    [ [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ],
      [ 0*Z(3), Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ],
      [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ] ]
    gap> C2 := CheckMatCode( IdentityMat( 5, GF(2) ), GF(2) );
    a cyclic [5,0,5]5 code defined by check matrix over GF(2)
  ------------------------------------------------------------------
  
  5.2-4 HammingCode
  
  > HammingCode( r, F ) ______________________________________________function
  
  HammingCode  returns a Hamming code with redundancy r over F. A Hamming code
  is a single-error-correcting code. The parity check matrix of a Hamming code
  has  all  nonzero  vectors  of  length  r  in  its  columns,  except  for  a
  multiplication  factor.  The  decoding  algorithm  of  the Hamming code (see
  Decode (4.10-1)) makes use of this property.
  
  If  q  is  the  size  of  its field F, the returned Hamming code is a linear
  [(q^r-1)/(q-1), (q^r-1)/(q-1) - r, 3] code.
  
  ---------------------------  Example  ----------------------------
    gap> C1 := HammingCode( 4, GF(2) );
    a linear [15,11,3]1 Hamming (4,2) code over GF(2)
    gap> C2 := HammingCode( 3, GF(9) );
    a linear [91,88,3]1 Hamming (3,9) code over GF(9) 
  ------------------------------------------------------------------
  
  5.2-5 ReedMullerCode
  
  > ReedMullerCode( r, k ) ___________________________________________function
  
  ReedMullerCode  returns a binary 'Reed-Muller code' R(r, k) with dimension k
  and  order r. This is a code with length 2^k and minimum distance 2^k-r (see
  for  example,  section 1.10 in [HP03]). By definition, the r^th order binary
  Reed-Muller code of length n=2^m, for 0 <= r <= m, is the set of all vectors
  f, where f is a Boolean function which is a polynomial of degree at most r.
  
  ---------------------------  Example  ----------------------------
    gap> ReedMullerCode( 1, 3 );
    a linear [8,4,4]2 Reed-Muller (1,3) code over GF(2) 
  ------------------------------------------------------------------
  
  See GeneralizedReedMullerCode (5.6-3) for a more general construction.
  
  5.2-6 AlternantCode
  
  > AlternantCode( r, Y[, alpha], F ) ________________________________function
  
  AlternantCode  returns  an  'alternant code', with parameters r, Y and alpha
  (optional).  F  denotes  the  (finite)  base  field.  Here,  r is the design
  redundancy  of the code. Y and alpha are both vectors of length n from which
  the  parity  check  matrix  is  constructed.  The  check matrix has the form
  H=([a_i^j  y_i]),  where  0 <= j<= r-1, 1 <= i<= n, and where [...] is as in
  VerticalConversionFieldMat  (7.3-9)).  If  no alpha is specified, the vector
  [1,  a,  a^2, .., a^n-1] is used, where a is a primitive element of a Galois
  field F.
  
  ---------------------------  Example  ----------------------------
    gap> Y := [ 1, 1, 1, 1, 1, 1, 1];; a := PrimitiveUnityRoot( 2, 7 );;
    gap> alpha := List( [0..6], i -> a^i );;
    gap> C := AlternantCode( 2, Y, alpha, GF(8) );
    a linear [7,3,3..4]3..4 alternant code over GF(8) 
  ------------------------------------------------------------------
  
  5.2-7 GoppaCode
  
  > GoppaCode( G, L ) ________________________________________________function
  
  GoppaCode   returns   a  Goppa  code  C  from  Goppa  polynomial  g,  having
  coefficients in a Galois Field GF(q). L must be a list of elements in GF(q),
  that  are not roots of g. The word length of the code is equal to the length
  of  L.  The  parity check matrix has the form H=([a_i^j / G(a_i)])_0 <= j <=
  deg(g)-1,    a_i    in   L,   where   a_iin   L   and   [...]   is   as   in
  VerticalConversionFieldMat  (7.3-9), so H has entries in GF(q), q=p^m. It is
  known  that d(C)>= deg(g)+1, with a better bound in the binary case provided
  g  has  no  multiple roots. See Huffman and Pless [HP03] section 13.2.2, and
  MacWilliams and Sloane [MS83] section 12.3, for more details.
  
  One  can  also  call  GoppaCode using the syntax GoppaCode(g,n). When called
  with  parameter  n,  GUAVA  constructs  a  list  L of length n, such that no
  element of L is a root of g.
  
  This is a special case of an alternant code.
  
  ---------------------------  Example  ----------------------------
    gap> x:=Indeterminate(GF(8),"x");
    x
    gap> L:=Elements(GF(8));
    [ 0*Z(2), Z(2)^0, Z(2^3), Z(2^3)^2, Z(2^3)^3, Z(2^3)^4, Z(2^3)^5, Z(2^3)^6 ]
    gap> g:=x^2+x+1;
    x^2+x+Z(2)^0
    gap> C:=GoppaCode(g,L);
    a linear [8,2,5]3 Goppa code over GF(2)
    gap> xx := Indeterminate( GF(2), "xx" );; 
    gap> gg := xx^2 + xx + 1;; L := AsSSortedList( GF(8) );;
    gap> C1 := GoppaCode( gg, L );
    a linear [8,2,5]3 Goppa code over GF(2) 
    gap> y := Indeterminate( GF(2), "y" );; 
    gap> h := y^2 + y + 1;;
    gap> C2 := GoppaCode( h, 8 );
    a linear [8,2,5]3 Goppa code over GF(2) 
    gap> C1=C2;
    true
    gap> C=C1;
    true
  ------------------------------------------------------------------
  
  5.2-8 GeneralizedSrivastavaCode
  
  > GeneralizedSrivastavaCode( a, w, z[, t], F ) _____________________function
  
  GeneralizedSrivastavaCode   returns   a  generalized  Srivastava  code  with
  parameters  a, w, z, t. a = a_1, ..., a_n and w = w_1, ..., w_s are lists of
  n+s  distinct  elements  of  F=GF(q^m),  z  is a list of length n of nonzero
  elements  of GF(q^m). The parameter t determines the designed distance: d >=
  st + 1. The check matrix of this code is the form
  
  
       H=([\frac{z_i}{(a_i - w_j)^k}]),
  
  
  1<=  k<=  t, where [...] is as in VerticalConversionFieldMat (7.3-9). We use
  this  definition  of  H  to  define  the  code.  The default for t is 1. The
  original  Srivastava  codes  (see SrivastavaCode (5.2-9)) are a special case
  t=1, z_i=a_i^mu, for some mu.
  
  ---------------------------  Example  ----------------------------
    gap> a := Filtered( AsSSortedList( GF(2^6) ), e -> e in GF(2^3) );;
    gap> w := [ Z(2^6) ];; z := List( [1..8], e -> 1 );;
    gap> C := GeneralizedSrivastavaCode( a, w, z, 1, GF(64) );
    a linear [8,2,2..5]3..4 generalized Srivastava code over GF(2) 
  ------------------------------------------------------------------
  
  5.2-9 SrivastavaCode
  
  > SrivastavaCode( a, w[, mu], F ) __________________________________function
  
  SrivastavaCode   returns  a  Srivastava  code  with  parameters  a,  w  (and
  optionally  mu).  a  =  a_1, ..., a_n and w = w_1, ..., w_s are lists of n+s
  distinct elements of F=GF(q^m). The default for mu is 1. The Srivastava code
  is a generalized Srivastava code, in which z_i = a_i^mu for some mu and t=1.
  
  J.  N.  Srivastava  introduced  this  code  in 1967, though his work was not
  published.  See  Helgert  [Hel72] for more details on the properties of this
  code.  Related  reference: G. Roelofsen, On Goppa and Generalized Srivastava
  Codes PhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ. of Technology,
  the Netherlands, 1982.
  
  ---------------------------  Example  ----------------------------
    gap> a := AsSSortedList( GF(11) ){[2..8]};;
    gap> w := AsSSortedList( GF(11) ){[9..10]};;
    gap> C := SrivastavaCode( a, w, 2, GF(11) );
    a linear [7,5,3]2 Srivastava code over GF(11)
    gap> IsMDSCode( C );
    true    # Always true if F is a prime field 
  ------------------------------------------------------------------
  
  5.2-10 CordaroWagnerCode
  
  > CordaroWagnerCode( n ) ___________________________________________function
  
  CordaroWagnerCode  returns  a  binary Cordaro-Wagner code. This is a code of
  length  n  and dimension 2 having the best possible minimum distance d. This
  code   is   just   a  little  bit  less  trivial  than  RepetitionCode  (see
  RepetitionCode (5.5-13)).
  
  ---------------------------  Example  ----------------------------
    gap> C := CordaroWagnerCode( 11 );
    a linear [11,2,7]5 Cordaro-Wagner code over GF(2)
    gap> AsSSortedList(C);                 
    [ [ 0 0 0 0 0 0 0 0 0 0 0 ], [ 0 0 0 0 1 1 1 1 1 1 1 ], 
      [ 1 1 1 1 0 0 0 1 1 1 1 ], [ 1 1 1 1 1 1 1 0 0 0 0 ] ]
  ------------------------------------------------------------------
  
  5.2-11 FerreroDesignCode
  
  > FerreroDesignCode( P, m ) ________________________________________function
  
  Requires the GAP package SONATA
  
  A  group  K  together  with  a  group  of  automorphism H of K such that the
  semidirect  product  KH  is  a Frobenius group with complement H is called a
  Ferrero  pair  (K,  H) in SONATA. Take a Frobenius (G,+) group with kernel K
  and complement H. Consider the design D with point set K and block set a^H +
  b  |  a, b in K, a not= 0. Here a^H denotes the orbit of a under conjugation
  by  elements of H. Every planar near-ring design of type "*" can be obtained
  in  this  way from groups. These designs (from a Frobenius kernel of order v
  and  a  Frobenius  complement  of order k) have v(v-1)/k distinct blocks and
  they  are all of size k. Moreover each of the v points occurs in exactly v-1
  distinct blocks. Hence the rows and the columns of the incidence matrix M of
  the design are always of constant weight.
  
  FerreroDesignCode  constructs  binary  linear code arising from the incdence
  matrix   of  a  design  associated  to  a  "Ferrero  pair"  arising  from  a
  fixed-point-free (fpf) automorphism groups and Frobenius group.
  
  INPUT:  P  is a list of prime powers describing an abelian group G. m > 0 is
  an  integer  such  that  G admits a cyclic fpf automorphism group of size m.
  This  means that for all q = p^k in P, OrderMod(p, m) must divide q (see the
  SONATA documentation for FpfAutomorphismGroupsCyclic).
  
  OUTPUT:  The  binary  linear  code  whose  generator matrix is the incidence
  matrix  of  a  design  associated  to  a  "Ferrero  pair"  arising  from the
  fixed-point-free  (fpf)  automorphism group of G. The pair (H,K) is called a
  Ferraro  pair  and  the  semidirect  product  KH  is  a Frobenius group with
  complement H.
  
  AUTHORS: Peter Mayr and David Joyner
  
  ---------------------------  Example  ----------------------------
    gap> G:=AbelianGroup([5,5] );
     [ pc group of size 25 with 2 generators ]
    gap> FpfAutomorphismGroupsMaxSize( G );
    [ 24, 2 ]
    gap> L:=FpfAutomorphismGroupsCyclic( [5,5], 3 );
    [ [ [ f1, f2 ] -> [ f1*f2^2, f1*f2^3 ] ],
      [ pc group of size 25 with 2 generators ] ]
    gap> D := DesignFromFerreroPair( L[2], Group(L[1][1]), "*" );
     [ a 2 - ( 25, 3, 2 ) nearring generated design ]
    gap> M:=IncidenceMat( D );; Length(M); Length(TransposedMat(M));
    25
    200
    gap> C1:=GeneratorMatCode(M*Z(2),GF(2));
    a linear [200,25,1..24]62..100 code defined by generator matrix over GF(2)
    gap> MinimumDistance(C1);
    24
    gap> C2:=FerreroDesignCode( [5,5],3);
    a linear [200,25,1..24]62..100 code defined by generator matrix over GF(2)
    gap> C1=C2;
    true
    
  ------------------------------------------------------------------
  
  5.2-12 RandomLinearCode
  
  > RandomLinearCode( n, k, F ) ______________________________________function
  
  RandomLinearCode  returns a random linear code with word length n, dimension
  k  over  field F. The method used is to first construct a kx n matrix of the
  block  form  (I,A),  where  I  is a kx k identity matrix and A is a kx (n-k)
  matrix constructed using Random(F) repeatedly. Then the columns are permuted
  using a randomly selected element of SymmetricGroup(n).
  
  To  create  a  random  unrestricted  code,  use  RandomCode  (see RandomCode
  (5.1-5)).
  
  ---------------------------  Example  ----------------------------
    gap> C := RandomLinearCode( 15, 4, GF(3) );
    a  [15,4,?] randomly generated code over GF(3)
    gap> Display(C);
    a linear [15,4,1..6]6..10 random linear code over GF(3)
  ------------------------------------------------------------------
  
  The  method GUAVA chooses to output the result of a RandomLinearCode command
  is  different  than  other  codes.  For  example,  the bounds on the minimum
  distance  is not displayed. Howeer, you can use the Display command to print
  this  information. This new display method was added in version 1.9 to speed
  up  the  command  (if n is about 80 and k about 40, for example, the time it
  took  to look up and/or calculate the bounds on the minimum distance was too
  long).
  
  5.2-13 OptimalityCode
  
  > OptimalityCode( C ) ______________________________________________function
  
  OptimalityCode returns the difference between the smallest known upper bound
  and  the  actual  size  of  the  code.  Note  that the value of the function
  UpperBound  is  not  always  equal to the actual upper bound A(n,d) thus the
  result may not be equal to 0 even if the code is optimal!
  
  OptimalityLinearCode is similar but applies only to linear codes.
  
  5.2-14 BestKnownLinearCode
  
  > BestKnownLinearCode( n, k, F ) ___________________________________function
  
  BestKnownLinearCode  returns  the best known (as of 11 May 2006) linear code
  of  length  n,  dimension  k  over  field  F.  The  function uses the tables
  described in section BoundsMinimumDistance (7.1-13) to construct this code.
  
  This command can also be called using the syntax BestKnownLinearCode( rec ),
  where  rec must be a record containing the fields `lowerBound', `upperBound'
  and  `construction'.  It  uses  the information in this field to construct a
  code.   This   form   is  meant  to  be  used  together  with  the  function
  BoundsMinimumDistance  (see  BoundsMinimumDistance  (7.1-13)), if the bounds
  are already calculated.
  
  ---------------------------  Example  ----------------------------
    gap> C1 := BestKnownLinearCode( 23, 12, GF(2) );
    a linear [23,12,7]3 punctured code
    gap> C1 = BinaryGolayCode();
    false     # it's constructed differently
    gap> C1 := BestKnownLinearCode( 23, 12, GF(2) );
    a linear [23,12,7]3 punctured code
    gap> G1 := MutableCopyMat(GeneratorMat(C1));;
    gap> PutStandardForm(G1);
    ()
    gap> Display(G1);
     1 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1
     . 1 . . . . . . . . . . 1 1 1 1 1 . . 1 . . .
     . . 1 . . . . . . . . . 1 1 . 1 . . 1 . 1 . 1
     . . . 1 . . . . . . . . 1 1 . . . 1 1 1 . 1 .
     . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 . 1
     . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 1
     . . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1
     . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 . .
     . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 .
     . . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 .
     . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1 1
     . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1
    gap> C2 := BinaryGolayCode();
    a cyclic [23,12,7]3 binary Golay code over GF(2)
    gap> G2 := MutableCopyMat(GeneratorMat(C2));;
    gap> PutStandardForm(G2);
    ()
    gap> Display(G2);
     1 . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1
     . 1 . . . . . . . . . . 1 1 1 1 1 . . 1 . . 1
     . . 1 . . . . . . . . . 1 1 . 1 . . 1 . 1 . 1
     . . . 1 . . . . . . . . 1 1 . . . 1 1 1 . 1 1
     . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 . .
     . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1 .
     . . . . . . 1 . . . . . . . 1 1 . . 1 1 . 1 1
     . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 . .
     . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1 .
     . . . . . . . . . 1 . . . . 1 . 1 1 . 1 1 1 1
     . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1 .
     . . . . . . . . . . . 1 . 1 . 1 1 1 . . . 1 1
    ## Despite their generator matrices are different, they are equivalent codes, see below.
    gap> IsEquivalent(C1,C2);
    true
    gap> CodeIsomorphism(C1,C2);
    (4,14,6,12,5)(7,17,18,11,19)(8,22,13,21,16)(10,23,15,20)
    gap> Display( BestKnownLinearCode( 81, 77, GF(4) ) );
    a linear [81,77,3]2..3 shortened code of
    a linear [85,81,3]1 Hamming (4,4) code over GF(4)
    gap> C:=BestKnownLinearCode(174,72);
    a linear [174,72,31..36]26..87 code defined by generator matrix over GF(2)
    gap> bounds := BoundsMinimumDistance( 81, 77, GF(4) );
    rec( n := 81, k := 77, q := 4, 
      references := rec( Ham := [ "%T this reference is unknown, for more info", 
              "%T contact A.E. Brouwer (aeb@cwi.nl)" ], 
          cap := [ "%T this reference is unknown, for more info", 
              "%T contact A.E. Brouwer (aeb@cwi.nl)" ] ), 
      construction := [ (Operation "ShortenedCode"), 
          [ [ (Operation "HammingCode"), [ 4, 4 ] ], [ 1, 2, 3, 4 ] ] ], 
      lowerBound := 3, 
      lowerBoundExplanation := [ "Lb(81,77)=3, by shortening of:", 
          "Lb(85,81)=3, reference: Ham" ], upperBound := 3, 
      upperBoundExplanation := [ "Ub(81,77)=3, by considering shortening to:", 
          "Ub(18,14)=3, reference: cap" ] )
    gap> C := BestKnownLinearCode( bounds );
    a linear [81,77,3]2..3 shortened code
    gap> C = BestKnownLinearCode(81, 77, GF(4) );
    true
  ------------------------------------------------------------------
  
  
  5.3 Gabidulin Codes
  
  These  five  binary,  linear codes are derived from an article by Gabidulin,
  Davydov  and  Tombak [GDT91]. All these codes are defined by check matrices.
  Exact  definitions  can  be  found  in  the article. The Gabidulin code, the
  enlarged Gabidulin code, the Davydov code, the Tombak code, and the enlarged
  Tombak  code, correspond with theorem 1, 2, 3, 4, and 5, respectively in the
  article.
  
  Like the Hamming codes, these codes have fixed minimum distance and covering
  radius, but can be arbitrarily long.
  
  5.3-1 GabidulinCode
  
  > GabidulinCode( m, w1, w2 ) _______________________________________function
  
  GabidulinCode  yields a code of length 5 . 2^m-2-1, redundancy 2m-1, minimum
  distance 3 and covering radius 2. w1 and w2 should be elements of GF(2^m-2).
  
  5.3-2 EnlargedGabidulinCode
  
  > EnlargedGabidulinCode( m, w1, w2, e ) ____________________________function
  
  EnlargedGabidulinCode  yields  a  code  of length 7. 2^m-2-2, redundancy 2m,
  minimum  distance  3  and  covering  radius  2.  w1  and  w2 are elements of
  GF(2^m-2). e is an element of GF(2^m).
  
  5.3-3 DavydovCode
  
  > DavydovCode( r, v, ei, ej ) ______________________________________function
  
  DavydovCode  yields  a code of length 2^v + 2^r-v - 3, redundancy r, minimum
  distance  4 and covering radius 2. v is an integer between 2 and r-2. ei and
  ej are elements of GF(2^v) and GF(2^r-v), respectively.
  
  5.3-4 TombakCode
  
  > TombakCode( m, e, beta, gamma, w1, w2 ) __________________________function
  
  TombakCode  yields  a  code of length 15 * 2^m-3 - 3, redundancy 2m, minimum
  distance 4 and covering radius 2. e is an element of GF(2^m). beta and gamma
  are elements of GF(2^m-1). w1 and w2 are elements of GF(2^m-3).
  
  5.3-5 EnlargedTombakCode
  
  > EnlargedTombakCode( m, e, beta, gamma, w1, w2, u ) _______________function
  
  EnlargedTombakCode  yields a code of length 23 * 2^m-4 - 3, redundancy 2m-1,
  minimum  distance 4 and covering radius 2. The parameters m, e, beta, gamma,
  w1 and w2 are defined as in TombakCode. u is an element of GF(2^m-1).
  
  ---------------------------  Example  ----------------------------
    gap> GabidulinCode( 4, Z(4)^0, Z(4)^1 );
    a linear [19,12,3]2 Gabidulin code (m=4) over GF(2)
    gap> EnlargedGabidulinCode( 4, Z(4)^0, Z(4)^1, Z(16)^11 );
    a linear [26,18,3]2 enlarged Gabidulin code (m=4) over GF(2)
    gap> DavydovCode( 6, 3, Z(8)^1, Z(8)^5 );
    a linear [13,7,4]2 Davydov code (r=6, v=3) over GF(2)
    gap> TombakCode( 5, Z(32)^6, Z(16)^14, Z(16)^10, Z(4)^0, Z(4)^1 );
    a linear [57,47,4]2 Tombak code (m=5) over GF(2)
    gap> EnlargedTombakCode( 6, Z(32)^6, Z(16)^14, Z(16)^10,
    > Z(4)^0, Z(4)^0, Z(32)^23 );
    a linear [89,78,4]2 enlarged Tombak code (m=6) over GF(2)
  ------------------------------------------------------------------
  
  
  5.4 Golay Codes
  
  "  The  Golay  code  is  probably  the  most important of all codes for both
  practical  and  theoretical  reasons.  "  ([MS83],  pg.  64). Though born in
  Switzerland, M. J. E. Golay (1902-1989) worked for the US Army Labs for most
  of  his  career.  For more information on his life, see his obit in the June
  1990 IEEE Information Society Newsletter.
  
  5.4-1 BinaryGolayCode
  
  > BinaryGolayCode(  ) ______________________________________________function
  
  BinaryGolayCode  returns  a  binary  Golay code. This is a perfect [23,12,7]
  code.    It    is    also    cyclic,    and    has    generator   polynomial
  g(x)=1+x^2+x^4+x^5+x^6+x^10+x^11.  Extending it results in an extended Golay
  code  (see  ExtendedBinaryGolayCode (5.4-2)). There's also the ternary Golay
  code (see TernaryGolayCode (5.4-3)).
  
  ---------------------------  Example  ----------------------------
    gap> C:=BinaryGolayCode();
    a cyclic [23,12,7]3 binary Golay code over GF(2)
    gap> ExtendedBinaryGolayCode() = ExtendedCode(BinaryGolayCode());
    true
    gap> IsPerfectCode(C);
    true 
    gap> IsCyclicCode(C);
    true
  ------------------------------------------------------------------
  
  5.4-2 ExtendedBinaryGolayCode
  
  > ExtendedBinaryGolayCode(  ) ______________________________________function
  
  ExtendedBinaryGolayCode  returns  an  extended  binary Golay code. This is a
  [24,12,8]  code. Puncturing in the last position results in a perfect binary
  Golay code (see BinaryGolayCode (5.4-1)). The code is self-dual.
  
  ---------------------------  Example  ----------------------------
    gap> C := ExtendedBinaryGolayCode();
    a linear [24,12,8]4 extended binary Golay code over GF(2)
    gap> IsSelfDualCode(C);
    true
    gap> P := PuncturedCode(C);
    a linear [23,12,7]3 punctured code
    gap> P = BinaryGolayCode();
    true 
    gap> IsCyclicCode(C);
    false
    
  ------------------------------------------------------------------
  
  5.4-3 TernaryGolayCode
  
  > TernaryGolayCode(  ) _____________________________________________function
  
  TernaryGolayCode  returns  a  ternary Golay code. This is a perfect [11,6,5]
  code.    It    is    also    cyclic,    and    has    generator   polynomial
  g(x)=2+x^2+2x^3+x^4+x^5. Extending it results in an extended Golay code (see
  ExtendedTernaryGolayCode  (5.4-4)).  There's also the binary Golay code (see
  BinaryGolayCode (5.4-1)).
  
  ---------------------------  Example  ----------------------------
    gap> C:=TernaryGolayCode();
    a cyclic [11,6,5]2 ternary Golay code over GF(3)
    gap> ExtendedTernaryGolayCode() = ExtendedCode(TernaryGolayCode());
    true 
    gap> IsCyclicCode(C);
    true
  ------------------------------------------------------------------
  
  5.4-4 ExtendedTernaryGolayCode
  
  > ExtendedTernaryGolayCode(  ) _____________________________________function
  
  ExtendedTernaryGolayCode  returns  an extended ternary Golay code. This is a
  [12,6,6]  code. Puncturing this code results in a perfect ternary Golay code
  (see TernaryGolayCode (5.4-3)). The code is self-dual.
  
  ---------------------------  Example  ----------------------------
    gap> C := ExtendedTernaryGolayCode();
    a linear [12,6,6]3 extended ternary Golay code over GF(3)
    gap> IsSelfDualCode(C);
    true
    gap> P := PuncturedCode(C);
    a linear [11,6,5]2 punctured code
    gap> P = TernaryGolayCode();
    true 
    gap> IsCyclicCode(C);
    false
  ------------------------------------------------------------------
  
  
  5.5 Generating Cyclic Codes
  
  The  elements  of  a  cyclic  code  C  are  all multiples of a ('generator')
  polynomial g(x), where calculations are carried out modulo x^n-1. Therefore,
  as  polynomials  in x, the elements always have degree less than n. A cyclic
  code is an ideal in the ring F[x]/(x^n-1) of polynomials modulo x^n - 1. The
  unique  monic  polynomial  of  least  degree  that generates C is called the
  generator polynomial of C. It is a divisor of the polynomial x^n-1.
  
  The  check  polynomial is the polynomial h(x) with g(x)h(x)=x^n-1. Therefore
  it is also a divisor of x^n-1. The check polynomial has the property that
  
  
       c(x)h(x) \equiv 0 \pmod{x^n-1},
  
  
  for every codeword c(x)in C.
  
  The  first  two functions described below generate cyclic codes from a given
  generator  or  check  polynomial.  All cyclic codes can be constructed using
  these functions.
  
  Two  of  the  Golay  codes already described are cyclic (see BinaryGolayCode
  (5.4-1)  and  TernaryGolayCode (5.4-3)). For example, the GUAVA record for a
  binary Golay code contains the generator polynomial:
  
  ---------------------------  Example  ----------------------------
    gap> C := BinaryGolayCode();
    a cyclic [23,12,7]3 binary Golay code over GF(2)
    gap> NamesOfComponents(C);
    [ "LeftActingDomain", "GeneratorsOfLeftOperatorAdditiveGroup", "WordLength",
      "GeneratorMat", "GeneratorPol", "Dimension", "Redundancy", "Size", "name",
      "lowerBoundMinimumDistance", "upperBoundMinimumDistance", "WeightDistribution",
      "boundsCoveringRadius", "MinimumWeightOfGenerators", 
      "UpperBoundOptimalMinimumDistance" ]
    gap> C!.GeneratorPol;
    x_1^11+x_1^10+x_1^6+x_1^5+x_1^4+x_1^2+Z(2)^0
  ------------------------------------------------------------------
  
  Then  functions that generate cyclic codes from a prescribed set of roots of
  the  generator  polynomial  are  described,  including  the  BCH  codes (see
  RootsCode  (5.5-3),  BCHCode  (5.5-4),  ReedSolomonCode  (5.5-5)  and QRCode
  (5.5-7)).
  
  Finally we describe the trivial codes (see WholeSpaceCode (5.5-11), NullCode
  (5.5-12),  RepetitionCode (5.5-13)), and the command CyclicCodes which lists
  all cyclic codes (CyclicCodes (5.5-14)).
  
  5.5-1 GeneratorPolCode
  
  > GeneratorPolCode( g, n[, name], F ) ______________________________function
  
  GeneratorPolCode  creates  a cyclic code with a generator polynomial g, word
  length n, over F. name can contain a short description of the code.
  
  If g is not a divisor of x^n-1, it cannot be a generator polynomial. In that
  case,  a code is created with generator polynomial gcd( g, x^n-1 ), i.e. the
  greatest common divisor of g and x^n-1. This is a valid generator polynomial
  that generates the ideal (g). See Generating Cyclic Codes (5.5).
  
  ---------------------------  Example  ----------------------------
    gap> x:= Indeterminate( GF(2) );; P:= x^2+1;
    Z(2)^0+x^2
    gap> C1 := GeneratorPolCode(P, 7, GF(2));
    a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
    gap> GeneratorPol( C1 );
    Z(2)^0+x
    gap> C2 := GeneratorPolCode( x+1, 7, GF(2)); 
    a cyclic [7,6,1..2]1 code defined by generator polynomial over GF(2)
    gap> GeneratorPol( C2 );
    Z(2)^0+x
  ------------------------------------------------------------------
  
  5.5-2 CheckPolCode
  
  > CheckPolCode( h, n[, name], F ) __________________________________function
  
  CheckPolCode creates a cyclic code with a check polynomial h, word length n,
  over F. name can contain a short description of the code (as a string).
  
  If  h  is  not  a divisor of x^n-1, it cannot be a check polynomial. In that
  case,  a  code  is  created  with check polynomial gcd( h, x^n-1 ), i.e. the
  greatest  common  divisor  of  h and x^n-1. This is a valid check polynomial
  that yields the same elements as the ideal (h). See 5.5.
  
  ---------------------------  Example  ----------------------------
    gap>  x:= Indeterminate( GF(3) );; P:= x^2+2;
    -Z(3)^0+x_1^2
    gap> H := CheckPolCode(P, 7, GF(3));
    a cyclic [7,1,7]4 code defined by check polynomial over GF(3)
    gap> CheckPol(H);
    -Z(3)^0+x_1
    gap> Gcd(P, X(GF(3))^7-1);
    -Z(3)^0+x_1
  ------------------------------------------------------------------
  
  5.5-3 RootsCode
  
  > RootsCode( n, list ) _____________________________________________function
  
  This  is  the  generalization of the BCH, Reed-Solomon and quadratic residue
  codes (see BCHCode (5.5-4), ReedSolomonCode (5.5-5) and QRCode (5.5-7)). The
  user  can  give  a  length  of the code n and a prescribed set of zeros. The
  argument  list  must  be  a valid list of primitive n^th roots of unity in a
  splitting  field  GF(q^m).  The resulting code will be over the field GF(q).
  The function will return the largest possible cyclic code for which the list
  list  is a subset of the roots of the code. From this list, GUAVA calculates
  the entire set of roots.
  
  This  command can also be called with the syntax RootsCode( n, list, q ). In
  this  second form, the second argument is a list of integers, ranging from 0
  to  n-1.  The  resulting code will be over a field GF(q). GUAVA calculates a
  primitive  n^th  root  of  unity, alpha, in the extension field of GF(q). It
  uses  the  set  of  the  powers  of alpha in the list as a prescribed set of
  zeros.
  
  ---------------------------  Example  ----------------------------
    gap> a := PrimitiveUnityRoot( 3, 14 );
    Z(3^6)^52
    gap> C1 := RootsCode( 14, [ a^0, a, a^3 ] );
    a cyclic [14,7,3..6]3..7 code defined by roots over GF(3)
    gap> MinimumDistance( C1 );
    4
    gap> b := PrimitiveUnityRoot( 2, 15 );
    Z(2^4)
    gap> C2 := RootsCode( 15, [ b, b^2, b^3, b^4 ] );
    a cyclic [15,7,5]3..5 code defined by roots over GF(2)
    gap> C2 = BCHCode( 15, 5, GF(2) );
    true 
    C3 := RootsCode( 4, [ 1, 2 ], 5 );
    RootsOfCode( C3 );
    C3 = ReedSolomonCode( 4, 3 );
    
  ------------------------------------------------------------------
  
  5.5-4 BCHCode
  
  > BCHCode( n[, b], delta, F ) ______________________________________function
  
  The function BCHCode returns a 'Bose-Chaudhuri-Hockenghem code' (or BCH code
  for  short). This is the largest possible cyclic code of length n over field
  F, whose generator polynomial has zeros
  
  
       a^{b},a^{b+1}, ..., a^{b+delta-2},
  
  
  where  a is a primitive n^th root of unity in the splitting field GF(q^m), b
  is  an  integer  0<=  b<=  n-delta+1  and m is the multiplicative order of q
  modulo   n.  (The  integers  b,...,b+delta-2  typically  lie  in  the  range
  1,...,n-1.)  Default  value for b is 1, though the algorithm allows b=0. The
  length  n  of the code and the size q of the field must be relatively prime.
  The  generator  polynomial  is  equal  to  the  least common multiple of the
  minimal polynomials of
  
  
       a^{b}, a^{b+1}, ..., a^{b+delta-2}.
  
  
  The  set  of zeroes of the generator polynomial is equal to the union of the
  sets
  
  
       \{a^x\ |\ x \in C_k\},
  
  
  where  C_k  is the k^th cyclotomic coset of q modulo n and b<= k<= b+delta-2
  (see CyclotomicCosets (7.5-12)).
  
  Special cases are b=1 (resulting codes are called 'narrow-sense' BCH codes),
  and  n=q^m-1  (known as 'primitive' BCH codes). GUAVA calculates the largest
  value  of  d  for which the BCH code with designed distance d coincides with
  the  BCH  code  with  designed distance delta. This distance d is called the
  Bose  distance of the code. The true minimum distance of the code is greater
  than or equal to the Bose distance.
  
  Printed  are the designed distance (to be precise, the Bose distance) d, and
  the starting power b.
  
  The  Sugiyama  decoding  algorithm  has  been implemented for this code (see
  Decode (4.10-1)).
  
  ---------------------------  Example  ----------------------------
    gap> C1 := BCHCode( 15, 3, 5, GF(2) );
    a cyclic [15,5,7]5 BCH code, delta=7, b=1 over GF(2)
    gap> DesignedDistance( C1 );
    7
    gap> C2 := BCHCode( 23, 2, GF(2) );
    a cyclic [23,12,5..7]3 BCH code, delta=5, b=1 over GF(2)
    gap> DesignedDistance( C2 );       
    5
    gap> MinimumDistance(C2);
    7 
  ------------------------------------------------------------------
  
  See RootsCode (5.5-3) for a more general construction.
  
  5.5-5 ReedSolomonCode
  
  > ReedSolomonCode( n, d ) __________________________________________function
  
  ReedSolomonCode returns a 'Reed-Solomon code' of length n, designed distance
  d.  This  code  is  a  primitive narrow-sense BCH code over the field GF(q),
  where  q=n+1.  The  dimension  of  an  RS  code  is  n-d+1. According to the
  Singleton  bound  (see  UpperBoundSingleton (7.1-1)) the dimension cannot be
  greater  than this, so the true minimum distance of an RS code is equal to d
  and the code is maximum distance separable (see IsMDSCode (4.3-7)).
  
  ---------------------------  Example  ----------------------------
    gap> C1 := ReedSolomonCode( 3, 2 );
    a cyclic [3,2,2]1 Reed-Solomon code over GF(4)
    gap> IsCyclicCode(C1);
    true
    gap> C2 := ReedSolomonCode( 4, 3 );
    a cyclic [4,2,3]2 Reed-Solomon code over GF(5)
    gap> RootsOfCode( C2 );
    [ Z(5), Z(5)^2 ]
    gap> IsMDSCode(C2);
    true 
  ------------------------------------------------------------------
  
  See GeneralizedReedSolomonCode (5.6-2) for a more general construction.
  
  5.5-6 ExtendedReedSolomonCode
  
  > ExtendedReedSolomonCode( n, d ) __________________________________function
  
  ExtendedReedSolomonCode  creates  a  Reed-Solomon  code  of  length n-1 with
  designed  distance d-1 and then returns the code which is extended by adding
  an overall parity-check symbol. The motivation for creating this function is
  calling  ExtendedCode  (6.1-1)  function  over a Reed-Solomon code will take
  considerably long time.
  
  ---------------------------  Example  ----------------------------
    gap> C := ExtendedReedSolomonCode(17, 13);
    a linear [17,5,13]9..12 extended Reed Solomon code over GF(17)
    gap> IsMDSCode(C);
    true
  ------------------------------------------------------------------
  
  5.5-7 QRCode
  
  > QRCode( n, F ) ___________________________________________________function
  
  QRCode  returns a quadratic residue code. If F is a field GF(q), then q must
  be  a  quadratic  residue modulo n. That is, an x exists with x^2 = q mod n.
  Both  n and q must be primes. Its generator polynomial is the product of the
  polynomials  x-a^i. a is a primitive n^th root of unity, and i is an integer
  in the set of quadratic residues modulo n.
  
  ---------------------------  Example  ----------------------------
    gap> C1 := QRCode( 7, GF(2) );
    a cyclic [7,4,3]1 quadratic residue code over GF(2)
    gap> IsEquivalent( C1, HammingCode( 3, GF(2) ) );
    true
    gap> IsCyclicCode(C1);
    true
    gap> IsCyclicCode(HammingCode( 3, GF(2) ));
    false
    gap> C2 := QRCode( 11, GF(3) );
    a cyclic [11,6,4..5]2 quadratic residue code over GF(3)
    gap> C2 = TernaryGolayCode();
    true 
    gap> Q1 := QRCode( 7, GF(2));
    a cyclic [7,4,3]1 quadratic residue code over GF(2)
    gap> P1:=AutomorphismGroup(Q1); IdGroup(P1);
    Group([ (1,2)(5,7), (2,3)(4,7), (2,4)(5,6), (3,5)(6,7), (3,7)(5,6) ])
    [ 168, 42 ]
  ------------------------------------------------------------------
  
  5.5-8 QQRCodeNC
  
  > QQRCodeNC( p ) ___________________________________________________function
  
  QQRCodeNC  is  the  same  as QQRCode, except that it uses GeneratorMatCodeNC
  instead of GeneratorMatCode.
  
  5.5-9 QQRCode
  
  > QQRCode( p ) _____________________________________________________function
  
  QQRCode  returns  a  quasi-quadratic residue code, as defined by Proposition
  2.2  in  Bazzi-Mittel [BMd)]. The parameter p must be a prime. Its generator
  matrix has the block form G=(Q,N). Here Q is a px circulant matrix whose top
  row  is  (0,x_1,...,x_p-1),  where  x_i=1  if  and  only if i is a quadratic
  residue   mod  p,  and  N  is  a  px  circulant  matrix  whose  top  row  is
  (0,y_1,...,y_p-1),  where  x_i+y_i=1 for all i. (In fact, this matrix can be
  recovered as the component DoublyCirculant of the code.)
  
  ---------------------------  Example  ----------------------------
    gap> C1 := QQRCode( 7);
    a linear [14,7,1..4]3..5 code defined by generator matrix over GF(2)
    gap> G1:=GeneratorMat(C1);;
    gap> Display(G1);
     . 1 1 . 1 . . . . . 1 . 1 1
     1 . 1 1 1 . . . . 1 1 1 . 1
     . . . 1 1 . 1 . 1 1 . . . 1
     . . 1 . 1 1 1 1 . 1 . . 1 1
     . . . . . . . 1 . . 1 1 1 .
     . . . . . . . . . 1 1 1 . 1
     . . . . . . . . 1 . . 1 1 1
    gap> Display(C1!.DoublyCirculant);
     . 1 1 . 1 . . . . . 1 . 1 1
     1 1 . 1 . . . . . 1 . 1 1 .
     1 . 1 . . . 1 . 1 . 1 1 . .
     . 1 . . . 1 1 1 . 1 1 . . .
     1 . . . 1 1 . . 1 1 . . . 1
     . . . 1 1 . 1 1 1 . . . 1 .
     . . 1 1 . 1 . 1 . . . 1 . 1
    gap> MinimumDistance(C1);
    4
    gap> C2 := QQRCode( 29); MinimumDistance(C2);
    a linear [58,28,1..14]8..29 code defined by generator matrix over GF(2)
    12
    gap> Aut2:=AutomorphismGroup(C2); IdGroup(Aut2);
    [ permutation group of size 812 with 4 generators ]
    [ 812, 7 ]
  ------------------------------------------------------------------
  
  5.5-10 FireCode
  
  > FireCode( g, b ) _________________________________________________function
  
  FireCode  constructs  a  (binary)  Fire code. g is a primitive polynomial of
  degree  m,  and a factor of x^r-1. b an integer 0 <= b <= m not divisible by
  r,  that  determines  the  burst  length of a single error burst that can be
  corrected.  The  argument  g  can be a polynomial with base ring GF(2), or a
  list  of  coefficients  in  GF(2).  The  generator polynomial of the code is
  defined as the product of g and x^2b-1+1.
  
  Here  is  the  general  definition  of 'Fire code', named after P. Fire, who
  introduced  these  codes  in 1959 in order to correct burst errors. First, a
  definition.  If  F=GF(q)  and  fin  F[x]  then  we  say  f  has  order  e if
  f(x)|(x^e-1).  A Fire code is a cyclic code over F with generator polynomial
  g(x)=  (x^2t-1-1)p(x),  where  p(x)  does  not divide x^2t-1-1 and satisfies
  deg(p(x))>=  t.  The  length of such a code is the order of g(x). Non-binary
  Fire codes have not been implemented.
  
  .
  
  ---------------------------  Example  ----------------------------
    gap> x:= Indeterminate( GF(2) );; G:= x^3+x^2+1;
    Z(2)^0+x^2+x^3
    gap> Factors( G );
    [ Z(2)^0+x^2+x^3 ]
    gap> C := FireCode( G, 3 );
    a cyclic [35,27,1..4]2..6 3 burst error correcting fire code over GF(2)
    gap> MinimumDistance( C );
    4     # Still it can correct bursts of length 3 
  ------------------------------------------------------------------
  
  5.5-11 WholeSpaceCode
  
  > WholeSpaceCode( n, F ) ___________________________________________function
  
  WholeSpaceCode  returns the cyclic whole space code of length n over F. This
  code  consists  of all polynomials of degree less than n and coefficients in
  F.
  
  ---------------------------  Example  ----------------------------
    gap> C := WholeSpaceCode( 5, GF(3) );
    a cyclic [5,5,1]0 whole space code over GF(3)
  ------------------------------------------------------------------
  
  5.5-12 NullCode
  
  > NullCode( n, F ) _________________________________________________function
  
  NullCode  returns  the  zero-dimensional nullcode with length n over F. This
  code has only one word: the all zero word. It is cyclic though!
  
  ---------------------------  Example  ----------------------------
    gap> C := NullCode( 5, GF(3) );
    a cyclic [5,0,5]5 nullcode over GF(3)
    gap> AsSSortedList( C );
    [ [ 0 0 0 0 0 ] ]
  ------------------------------------------------------------------
  
  5.5-13 RepetitionCode
  
  > RepetitionCode( n, F ) ___________________________________________function
  
  RepetitionCode  returns  the  cyclic repetition code of length n over F. The
  code  has  as  many  elements  as  F,  because  each  codeword consists of a
  repetition of one of these elements.
  
  ---------------------------  Example  ----------------------------
    gap> C := RepetitionCode( 3, GF(5) );
    a cyclic [3,1,3]2 repetition code over GF(5)
    gap> AsSSortedList( C );
    [ [ 0 0 0 ], [ 1 1 1 ], [ 2 2 2 ], [ 4 4 4 ], [ 3 3 3 ] ]
    gap> IsPerfectCode( C );
    false
    gap> IsMDSCode( C );
    true 
  ------------------------------------------------------------------
  
  5.5-14 CyclicCodes
  
  > CyclicCodes( n, F ) ______________________________________________function
  
  CyclicCodes  returns  a  list  of  all  cyclic  codes of length n over F. It
  constructs  all  possible  generator  polynomials from the factors of x^n-1.
  Each  combination  of  these  factors  yields  a  generator polynomial after
  multiplication.
  
  ---------------------------  Example  ----------------------------
    gap> CyclicCodes(3,GF(3));
    [ a cyclic [3,3,1]0 enumerated code over GF(3), 
    a cyclic [3,2,1..2]1 enumerated code over GF(3), 
    a cyclic [3,1,3]2 enumerated code over GF(3), 
    a cyclic [3,0,3]3 enumerated code over GF(3) ]
  ------------------------------------------------------------------
  
  5.5-15 NrCyclicCodes
  
  > NrCyclicCodes( n, F ) ____________________________________________function
  
  The function NrCyclicCodes calculates the number of cyclic codes of length n
  over field F.
  
  ---------------------------  Example  ----------------------------
    gap> NrCyclicCodes( 23, GF(2) );
    8
    gap> codelist := CyclicCodes( 23, GF(2) );
    [ a cyclic [23,23,1]0 enumerated code over GF(2), 
      a cyclic [23,22,1..2]1 enumerated code over GF(2), 
      a cyclic [23,11,1..8]4..7 enumerated code over GF(2), 
      a cyclic [23,0,23]23 enumerated code over GF(2), 
      a cyclic [23,11,1..8]4..7 enumerated code over GF(2), 
      a cyclic [23,12,1..7]3 enumerated code over GF(2), 
      a cyclic [23,1,23]11 enumerated code over GF(2), 
      a cyclic [23,12,1..7]3 enumerated code over GF(2) ]
    gap> BinaryGolayCode() in codelist;
    true
    gap> RepetitionCode( 23, GF(2) ) in codelist;
    true
    gap> CordaroWagnerCode( 23 ) in codelist;
    false    # This code is not cyclic 
  ------------------------------------------------------------------
  
  5.5-16 QuasiCyclicCode
  
  > QuasiCyclicCode( G, s, F ) _______________________________________function
  
  QuasiCyclicCode( G, k, F ) generates a rate 1/m quasi-cyclic code over field
  F.  The input G is a list of univariate polynomials and m is the cardinality
  of  this  list.  Note  that m must be at least 2. The input s is the size of
  each  circulant and it may not necessarily be the same as the code dimension
  k, i.e. k le s.
  
  There  also  exists  another version, QuasiCyclicCode( G, s ) which produces
  quasi-cyclic  codes  over  F_2  only.  Here  the  parameter s holds the same
  definition  and  the input G is a list of integers, where each integer is an
  octal representation of a binary univariate polynomial.
  
  ---------------------------  Example  ----------------------------
    gap> #
    gap> # This example show the case for k = s
    gap> #
    gap> L1 := PolyCodeword( Codeword("10000000000", GF(4)) );
    Z(2)^0
    gap> L2 := PolyCodeword( Codeword("12223201000", GF(4)) );
    x^7+Z(2^2)*x^5+Z(2^2)^2*x^4+Z(2^2)*x^3+Z(2^2)*x^2+Z(2^2)*x+Z(2)^0
    gap> L3 := PolyCodeword( Codeword("31111220110", GF(4)) );
    x^9+x^8+Z(2^2)*x^6+Z(2^2)*x^5+x^4+x^3+x^2+x+Z(2^2)^2
    gap> L4 := PolyCodeword( Codeword("13320333010", GF(4)) );
    x^9+Z(2^2)^2*x^7+Z(2^2)^2*x^6+Z(2^2)^2*x^5+Z(2^2)*x^3+Z(2^2)^2*x^2+Z(2^2)^2*x+\
    Z(2)^0
    gap> L5 := PolyCodeword( Codeword("20102211100", GF(4)) );
    x^8+x^7+x^6+Z(2^2)*x^5+Z(2^2)*x^4+x^2+Z(2^2)
    gap> C := QuasiCyclicCode( [L1, L2, L3, L4, L5], 11, GF(4) );
    a linear [55,11,1..32]24..41 quasi-cyclic code over GF(4)
    gap> MinimumDistance(C);
    29
    gap> Display(C);
    a linear [55,11,29]24..41 quasi-cyclic code over GF(4)
    gap> #
    gap> # This example show the case for k < s
    gap> #
    gap> L1 := PolyCodeword( Codeword("02212201220120211002000",GF(3)) );
    -x^19+x^16+x^15-x^14-x^12+x^11-x^9-x^8+x^7-x^5-x^4+x^3-x^2-x
    gap> L2 := PolyCodeword( Codeword("00221100200120220001110",GF(3)) );
    x^21+x^20+x^19-x^15-x^14-x^12+x^11-x^8+x^5+x^4-x^3-x^2
    gap> L3 := PolyCodeword( Codeword("22021011202221111020021",GF(3)) );
    x^22-x^21-x^18+x^16+x^15+x^14+x^13-x^12-x^11-x^10-x^8+x^7+x^6+x^4-x^3-x-Z(3)^0
    gap> C := QuasiCyclicCode( [L1, L2, L3], 23, GF(3) );
    a linear [69,12,1..37]27..46 quasi-cyclic code over GF(3)
    gap> MinimumDistance(C);
    34
    gap> Display(C);
    a linear [69,12,34]27..46 quasi-cyclic code over GF(3)
    gap> #
    gap> # This example show the binary case using octal representation
    gap> #
    gap> L1 := 001;;   # 0 000 001
    gap> L2 := 013;;   # 0 001 011
    gap> L3 := 015;;   # 0 001 101
    gap> L4 := 077;;   # 0 111 111
    gap> C := QuasiCyclicCode( [L1, L2, L3, L4], 7 );
    a linear [28,7,1..12]8..14 quasi-cyclic code over GF(2)
    gap> MinimumDistance(C);
    12
    gap> Display(C);
    a linear [28,7,12]8..14 quasi-cyclic code over GF(2)
  ------------------------------------------------------------------
  
  5.5-17 CyclicMDSCode
  
  > CyclicMDSCode( q, m, k ) _________________________________________function
  
  Given  the input parameters q, m and k, this function returns a [q^m + 1, k,
  q^m  -  k  + 2] cyclic MDS code over GF(q^m). If q^m is even, any value of k
  can be used, otherwise only odd value of k is accepted.
  
  ---------------------------  Example  ----------------------------
    gap> C:=CyclicMDSCode(2,6,24);
    a cyclic [65,24,42]31..41 MDS code over GF(64)
    gap> IsMDSCode(C);
    true
    gap> C:=CyclicMDSCode(5,3,77);
    a cyclic [126,77,50]35..49 MDS code over GF(125)
    gap> IsMDSCode(C);
    true
    gap> C:=CyclicMDSCode(3,3,25);
    a cyclic [28,25,4]2..3 MDS code over GF(27)
    gap> GeneratorPol(C);
    x^3+Z(3^3)^7*x^2+Z(3^3)^20*x-Z(3)^0
    gap>
  ------------------------------------------------------------------
  
  5.5-18 FourNegacirculantSelfDualCode
  
  > FourNegacirculantSelfDualCode( ax, bx, k ) _______________________function
  
  A  four-negacirculant  self-dual  code  has  a generator matrix G of the the
  following form
  
  
      -                    -
      |        |  A  |  B  |
  G = |  I_2k  |-----+-----|
      |        | -B^T| A^T |
      -                    -
  		  where  AA^T  +  BB^T  =  -I_k  and  A,  B and their transposed are all k x k
  negacirculant  matrices.  The  generator  matrix  G  returns  a [2k, k, d]_q
  self-dual  code  over  GF(q). For discussion on four-negacirculant self-dual
  codes, refer to [HHKK07].
  
  The  input  parameters  ax and bx are the defining polynomials over GF(q) of
  negacirculant  matrices  A  and  B respectively. The last parameter k is the
  dimension of the code.
  
  ---------------------------  Example  ----------------------------
    gap> ax:=PolyCodeword(Codeword("1200200", GF(3)));
    -x_1^4-x_1+Z(3)^0
    gap> bx:=PolyCodeword(Codeword("2020221", GF(3)));
    x_1^6-x_1^5-x_1^4-x_1^2-Z(3)^0
    gap> C:=FourNegacirculantSelfDualCode(ax, bx, 14);;
    gap> MinimumDistance(C);;
    gap> CoveringRadius(C);;
    gap> IsSelfDualCode(C);
    true
    gap> Display(C);
    a linear [28,14,9]7 four-negacirculant self-dual code over GF(3)
    gap> Display( GeneratorMat(C) );
     1 . . . . . . . . . . . . . 1 2 . . 2 . . 2 . 2 . 2 2 1
     . 1 . . . . . . . . . . . . . 1 2 . . 2 . 2 2 . 2 . 2 2
     . . 1 . . . . . . . . . . . . . 1 2 . . 2 1 2 2 . 2 . 2
     . . . 1 . . . . . . . . . . 1 . . 1 2 . . 1 1 2 2 . 2 .
     . . . . 1 . . . . . . . . . . 1 . . 1 2 . . 1 1 2 2 . 2
     . . . . . 1 . . . . . . . . . . 1 . . 1 2 1 . 1 1 2 2 .
     . . . . . . 1 . . . . . . . 1 . . 1 . . 1 . 1 . 1 1 2 2
     . . . . . . . 1 . . . . . . 1 1 2 2 . 2 . 1 . . 1 . . 1
     . . . . . . . . 1 . . . . . . 1 1 2 2 . 2 2 1 . . 1 . .
     . . . . . . . . . 1 . . . . 1 . 1 1 2 2 . . 2 1 . . 1 .
     . . . . . . . . . . 1 . . . . 1 . 1 1 2 2 . . 2 1 . . 1
     . . . . . . . . . . . 1 . . 1 . 1 . 1 1 2 2 . . 2 1 . .
     . . . . . . . . . . . . 1 . 1 1 . 1 . 1 1 . 2 . . 2 1 .
     . . . . . . . . . . . . . 1 2 1 1 . 1 . 1 . . 2 . . 2 1
    gap> ax:=PolyCodeword(Codeword("013131000", GF(7)));
    x_1^5+Z(7)*x_1^4+x_1^3+Z(7)*x_1^2+x_1
    gap> bx:=PolyCodeword(Codeword("425435030", GF(7)));
    Z(7)*x_1^7+Z(7)^5*x_1^5+Z(7)*x_1^4+Z(7)^4*x_1^3+Z(7)^5*x_1^2+Z(7)^2*x_1+Z(7)^4
    gap> C:=FourNegacirculantSelfDualCodeNC(ax, bx, 18);
    a linear [36,18,1..13]0..36 four-negacirculant self-dual code over GF(7)
    gap> IsSelfDualCode(C);
    true
  ------------------------------------------------------------------
  
  5.5-19 FourNegacirculantSelfDualCodeNC
  
  > FourNegacirculantSelfDualCodeNC( ax, bx, k ) _____________________function
  
  This  function  is  the  same  as FourNegacirculantSelfDualCode, except this
  version  is faster as it does not estimate the minimum distance and covering
  radius of the code.
  
  
  5.6 Evaluation Codes
  
  5.6-1 EvaluationCode
  
  > EvaluationCode( P, L, R ) ________________________________________function
  
  Input:  F  is  a  finite  field,  L  is  a  list  of  rational  functions in
  R=F[x_1,...,x_r],  P  is  a  list  of  n  points  in F^r at which all of the
  functions in L are defined.
  Output: The 'evaluation code' C, which is the image of the evalation map
  
  
       Eval_P:span(L)\rightarrow F^n,
  
  
  given  by  flongmapsto  (f(p_1),...,f(p_n)), where P=p_1,...,p_n and f in L.
  The generator matrix of C is G=(f_i(p_j))_f_iin L,p_jin P.
  
  This command returns a "record" object C with several extra components (type
  NamesOfComponents(C) to see them all): C!.EvaluationMat (not the same as the
  generator matrix in general), C!.points (namely P), C!.basis (namely L), and
  C!.ring (namely R).
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R := PolynomialRing(F,2);;
    gap> indets := IndeterminatesOfPolynomialRing(R);;
    gap> x:=indets[1];; y:=indets[2];;
    gap> L:=[x^2*y,x*y,x^5,x^4,x^3,x^2,x,x^0];;
    gap> Pts:=[ [ Z(11)^9, Z(11) ], [ Z(11)^8, Z(11) ], [ Z(11)^7, 0*Z(11) ],
       [ Z(11)^6, 0*Z(11) ], [ Z(11)^5, 0*Z(11) ], [ Z(11)^4, 0*Z(11) ],
       [ Z(11)^3, Z(11) ], [ Z(11)^2, 0*Z(11) ], [ Z(11), 0*Z(11) ], 
       [ Z(11)^0, 0*Z(11) ], [ 0*Z(11), Z(11) ] ];;
    gap> C:=EvaluationCode(Pts,L,R);
    a linear [11,8,1..3]2..3  evaluation code over GF(11)
    gap> MinimumDistance(C);
    3
    
  ------------------------------------------------------------------
  
  5.6-2 GeneralizedReedSolomonCode
  
  > GeneralizedReedSolomonCode( P, k, R ) ____________________________function
  
  Input:  R=F[x],  where  F is a finite field, k is a positive integer, P is a
  list of n points in F.
  Output: The C which is the image of the evaluation map
  
  
       Eval_P:F[x]_k\rightarrow F^n,
  
  
  given  by flongmapsto (f(p_1),...,f(p_n)), where P=p_1,...,p_nsubset F and f
  ranges over the space F[x]_k of all polynomials of degree less than k.
  
  This command returns a "record" object C with several extra components (type
  NamesOfComponents(C)  to  see  them  all):  C!.points  (namely P), C!.degree
  (namely k), and C!.ring (namely R).
  
  This code can be decoded using Decodeword, which applies the special decoder
  method (the interpolation method), or using GeneralizedReedSolomonDecoderGao
  which  applies  an algorithm of S. Gao (see GeneralizedReedSolomonDecoderGao
  (4.10-3)).  This  code  has  a  special  decoder record which implements the
  interpolation  algorithm  described  in  section 5.2 of Justesen and Hoholdt
  [JH04]. See Decode (4.10-1) and Decodeword (4.10-2) for more details.
  
  The     weighted     version     has    implemented    with    the    option
  GeneralizedReedSolomonCode(P,k,R,wts),  where  wts  =  [v_1,  ..., v_n] is a
  sequence  of  n  non-zero  elements from the base field F of R. See also the
  generalized Reed--Solomon code GRS_k(P, V) described in [MS83], p.303.
  
  The list-decoding algorithm of Sudan-Guraswami (described in section 12.1 of
  [JH04])  has  been  implemented  for  generalized  Reed-Solomon  codes.  See
  GeneralizedReedSolomonListDecoder (4.10-4).
  
  ---------------------------  Example  ----------------------------
    gap> R:=PolynomialRing(GF(11),["t"]);
    GF(11)[t]
    gap> P:=List([1,3,4,5,7],i->Z(11)^i);
    [ Z(11), Z(11)^3, Z(11)^4, Z(11)^5, Z(11)^7 ]
    gap> C:=GeneralizedReedSolomonCode(P,3,R);
    a linear [5,3,1..3]2  generalized Reed-Solomon code over GF(11)
    gap> MinimumDistance(C);
    3
    gap> V:=[Z(11)^0,Z(11)^0,Z(11)^0,Z(11)^0,Z(11)];
    [ Z(11)^0, Z(11)^0, Z(11)^0, Z(11)^0, Z(11) ]
    gap> C:=GeneralizedReedSolomonCode(P,3,R,V);
    a linear [5,3,1..3]2  weighted generalized Reed-Solomon code over GF(11)
    gap> MinimumDistance(C);
    3
  ------------------------------------------------------------------
  
  See EvaluationCode (5.6-1) for a more general construction.
  
  5.6-3 GeneralizedReedMullerCode
  
  > GeneralizedReedMullerCode( Pts, r, F ) ___________________________function
  
  GeneralizedReedMullerCode  returns  a 'Reed-Muller code' C with length |Pts|
  and  order  r.  One  considers (a) a basis of monomials for the vector space
  over  F=GF(q)  of all polynomials in F[x_1,...,x_d] of degree at most r, and
  (b)  a  set  Pts  of  points  in F^d. The generator matrix of the associated
  Reed-Muller  code  C  is G=(f(p))_fin B,p in Pts. This code C is constructed
  using the command GeneralizedReedMullerCode(Pts,r,F). When Pts is the set of
  all  q^d  points in F^d then the command GeneralizedReedMuller(d,r,F) yields
  the code. When Pts is the set of all (q-1)^d points with no coordinate equal
  to  0  then  this  is  can  be constructed using the ToricCode command (as a
  special case).
  
  This command returns a "record" object C with several extra components (type
  NamesOfComponents(C)  to see them all): C!.points (namely Pts) and C!.degree
  (namely r).
  
  ---------------------------  Example  ----------------------------
    gap> Pts:=ToricPoints(2,GF(5));
    [ [ Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5) ], [ Z(5)^0, Z(5)^2 ], [ Z(5)^0, Z(5)^3 ],
      [ Z(5), Z(5)^0 ], [ Z(5), Z(5) ], [ Z(5), Z(5)^2 ], [ Z(5), Z(5)^3 ],
      [ Z(5)^2, Z(5)^0 ], [ Z(5)^2, Z(5) ], [ Z(5)^2, Z(5)^2 ], [ Z(5)^2, Z(5)^3 ],
      [ Z(5)^3, Z(5)^0 ], [ Z(5)^3, Z(5) ], [ Z(5)^3, Z(5)^2 ], [ Z(5)^3, Z(5)^3 ] ]
    gap> C:=GeneralizedReedMullerCode(Pts,2,GF(5));
    a linear [16,6,1..11]6..10  generalized Reed-Muller code over GF(5)
  ------------------------------------------------------------------
  
  See EvaluationCode (5.6-1) for a more general construction.
  
  5.6-4 ToricPoints
  
  > ToricPoints( n, F ) ______________________________________________function
  
  ToricPoints(n,F) returns the points in (F^x)^n.
  
  ---------------------------  Example  ----------------------------
    gap> ToricPoints(2,GF(5));
    [ [ Z(5)^0, Z(5)^0 ], [ Z(5)^0, Z(5) ], [ Z(5)^0, Z(5)^2 ], 
      [ Z(5)^0, Z(5)^3 ], [ Z(5), Z(5)^0 ], [ Z(5), Z(5) ], [ Z(5), Z(5)^2 ], 
      [ Z(5), Z(5)^3 ], [ Z(5)^2, Z(5)^0 ], [ Z(5)^2, Z(5) ], [ Z(5)^2, Z(5)^2 ], 
      [ Z(5)^2, Z(5)^3 ], [ Z(5)^3, Z(5)^0 ], [ Z(5)^3, Z(5) ], 
      [ Z(5)^3, Z(5)^2 ], [ Z(5)^3, Z(5)^3 ] ]
  ------------------------------------------------------------------
  
  5.6-5 ToricCode
  
  > ToricCode( L, F ) ________________________________________________function
  
  This  function  returns the toric codes as in D. Joyner [Joy04] (see also J.
  P. Hansen [Han99]). This is a truncated (generalized) Reed-Muller code. Here
  L  is  a  list  of integral vectors and F is the finite field. The size of F
  must be different from 2.
  
  This  command  returns  a  record  object  C  with  an extra component (type
  NamesOfComponents(C) to see them all): C!.exponents (namely L).
  
  ---------------------------  Example  ----------------------------
    gap> C:=ToricCode([[1,0],[3,4]],GF(3));
    a linear [4,1,4]2 toric code over GF(3)
    gap> Display(GeneratorMat(C));
     1 1 2 2
    gap> Elements(C);
    [ [ 0 0 0 0 ], [ 1 1 2 2 ], [ 2 2 1 1 ] ]
  ------------------------------------------------------------------
  
  See EvaluationCode (5.6-1) for a more general construction.
  
  
  5.7 Algebraic geometric codes
  
  Certain  GUAVA  functions related to algebraic geometric codes are described
  in this section.
  
  5.7-1 AffineCurve
  
  > AffineCurve( poly, ring ) ________________________________________function
  
  This function simply defines the data structure of an affine plane curve. In
  GUAVA,  an  affine curve is a record crv having two components: a polynomial
  poly,  accessed  in  GUAVA  by  crv.polynomial, and a polynomial ring over a
  field  F  in  two  variables ring, accessed in GUAVA by crv.ring, containing
  poly. You use this function to define a curve in GUAVA.
  
  For  example,  for  the ring, one could take Q}[x,y], and for the polynomial
  one  could take f(x,y)=x^2+y^2-1. For the affine line, simply taking Q}[x,y]
  for the ring and f(x,y)=y for the polynomial.
  
  (Not sure if F neeeds to be a field in fact ...)
  
  To  compute  its degree, simply use the DegreeMultivariatePolynomial (7.6-2)
  command.
  
  ---------------------------  Example  ----------------------------
    gap>
    gap> F:=GF(11);;
    gap> R2:=PolynomialRing(F,2);
    PolynomialRing(..., [ x_1, x_2 ])
    gap> vars:=IndeterminatesOfPolynomialRing(R2);;
    gap> x:=vars[1];; y:=vars[2];;
    gap> poly:=y;; crvP1:=AffineCurve(poly,R2);
    rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := x_2 )
    gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
    1
    gap> poly:=y^2-x*(x^2-1);; ell_crv:=AffineCurve(poly,R2);
    rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := -x_1^3+x_2^2+x_1 )
    gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
    3
    gap> poly:=x^2+y^2-1;; circle:=AffineCurve(poly,R2);
    rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := x_1^2+x_2^2-Z(11)^0 )
    gap> degree_crv:=DegreeMultivariatePolynomial(poly,R2);
    2
    gap> q:=3;;
    gap> F:=GF(q^2);;
    gap> R:=PolynomialRing(F,2);;
    gap> vars:=IndeterminatesOfPolynomialRing(R);
    [ x_1, x_2 ]
    gap> x:=vars[1];
    x_1
    gap> y:=vars[2];
    x_2
    gap> crv:=AffineCurve(y^q+y-x^(q+1),R);
    rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := -x_1^4+x_2^3+x_2 )
    gap>
  ------------------------------------------------------------------
  
  In  GAP,  a  point  on a curve defined by f(x,y)=0 is simply a list [a,b] of
  elements of F satisfying this polynomial equation.
  
  5.7-2 AffinePointsOnCurve
  
  > AffinePointsOnCurve( f, R, E ) ___________________________________function
  
  AffinePointsOnCurve(f,R,E)   returns  the  points  (x,y)  in  E^2  satisying
  f(x,y)=0, where f is an element of R=F[x,y].
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);;
    gap> R := PolynomialRing(F,["x","y"]);
    PolynomialRing(..., [ x, y ])
    gap> indets := IndeterminatesOfPolynomialRing(R);;
    gap> x:=indets[1];; y:=indets[2];;
    gap> P:=AffinePointsOnCurve(y^2-x^11+x,R,F);
    [ [ Z(11)^9, 0*Z(11) ], [ Z(11)^8, 0*Z(11) ], [ Z(11)^7, 0*Z(11) ], 
      [ Z(11)^6, 0*Z(11) ], [ Z(11)^5, 0*Z(11) ], [ Z(11)^4, 0*Z(11) ], 
      [ Z(11)^3, 0*Z(11) ], [ Z(11)^2, 0*Z(11) ], [ Z(11), 0*Z(11) ], 
      [ Z(11)^0, 0*Z(11) ], [ 0*Z(11), 0*Z(11) ] ]
  ------------------------------------------------------------------
  
  5.7-3 GenusCurve
  
  > GenusCurve( crv ) ________________________________________________function
  
  If  crv  represents f(x,y)=0, where f is a polynomial of degree d, then this
  function  simply returns (d-1)(d-2)/2. At the present, the function does not
  check if the curve is singular (in which case the result may be false).
  
  ---------------------------  Example  ----------------------------
    gap> q:=4;;
    gap> F:=GF(q^2);;
    gap> a:=X(F);;
    gap> R1:=PolynomialRing(F,[a]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);;
    gap> b:=X(F);;
    gap> R2:=PolynomialRing(F,[a,b]);;
    gap> var2:=IndeterminatesOfPolynomialRing(R2);;
    gap> crv:=AffineCurve(b^q+b-a^(q+1),R2);;
    gap> crv:=AffineCurve(b^q+b-a^(q+1),R2);
    rec( ring := PolynomialRing(..., [ x_1, x_1 ]), polynomial := x_1^5+x_1^4+x_1 )
    gap> GenusCurve(crv);
    36
    
  ------------------------------------------------------------------
  
  5.7-4 GOrbitPoint 
  
  > GOrbitPoint ( GP ) _______________________________________________function
  
  P must be a point in projective space P^n(F), G must be a finite subgroup of
  GL(n+1,F),  This function returns all (representatives of projective) points
  in the orbit G* P.
  
  The  example below computes the orbit of the automorphism group on the Klein
  quartic over the field GF(43) on the ``point at infinity''.
  
  ---------------------------  Example  ----------------------------
    gap> R:= PolynomialRing( GF(43), 3 );;
    gap> vars:= IndeterminatesOfPolynomialRing(R);;
    gap> x:= vars[1];; y:= vars[2];; z:= vars[3];;
    gap> zz:=Z(43)^6;
    Z(43)^6
    gap> zzz:=Z(43);
    Z(43)
    gap> rho1:=zz^0*[[zz^4,0,0],[0,zz^2,0],[0,0,zz]];
    [ [ Z(43)^24, 0*Z(43), 0*Z(43) ], 
    [ 0*Z(43), Z(43)^12, 0*Z(43) ], 
    [ 0*Z(43), 0*Z(43), Z(43)^6 ] ]
    gap> rho2:=zz^0*[[0,1,0],[0,0,1],[1,0,0]];
    [ [ 0*Z(43), Z(43)^0, 0*Z(43) ], 
    [ 0*Z(43), 0*Z(43), Z(43)^0 ], 
    [ Z(43)^0, 0*Z(43), 0*Z(43) ] ]
    gap> rho3:=(-1)*[[(zz-zz^6 )/zzz^7,( zz^2-zz^5 )/ zzz^7, ( zz^4-zz^3 )/ zzz^7],
    >             [( zz^2-zz^5 )/ zzz^7, ( zz^4-zz^3 )/ zzz^7, ( zz-zz^6 )/ zzz^7],
    >             [( zz^4-zz^3 )/ zzz^7, ( zz-zz^6 )/ zzz^7, ( zz^2-zz^5 )/ zzz^7]];
    [ [ Z(43)^9, Z(43)^28, Z(43)^12 ], 
    [ Z(43)^28, Z(43)^12, Z(43)^9 ], 
    [ Z(43)^12, Z(43)^9, Z(43)^28 ] ]
    gap> G:=Group([rho1,rho2,rho3]);; #PSL(2,7)
    gap> Size(G);
    168
    gap> P:=[1,0,0]*zzz^0;
    [ Z(43)^0, 0*Z(43), 0*Z(43) ]
    gap> O:=GOrbitPoint(G,P);
    [ [ Z(43)^0, 0*Z(43), 0*Z(43) ], [ 0*Z(43), Z(43)^0, 0*Z(43) ], 
    [ 0*Z(43), 0*Z(43), Z(43)^0 ], [ Z(43)^0, Z(43)^39, Z(43)^16 ], 
    [ Z(43)^0, Z(43)^33, Z(43)^28 ], [ Z(43)^0, Z(43)^27, Z(43)^40 ],
    [ Z(43)^0, Z(43)^21, Z(43)^10 ], [ Z(43)^0, Z(43)^15, Z(43)^22 ], 
    [ Z(43)^0, Z(43)^9, Z(43)^34 ], [ Z(43)^0, Z(43)^3, Z(43)^4 ], 
    [ Z(43)^3, Z(43)^22, Z(43)^6 ], [ Z(43)^3, Z(43)^16, Z(43)^18 ],
    [ Z(43)^3, Z(43)^10, Z(43)^30 ], [ Z(43)^3, Z(43)^4, Z(43)^0 ], 
    [ Z(43)^3, Z(43)^40, Z(43)^12 ], [ Z(43)^3, Z(43)^34, Z(43)^24 ], 
    [ Z(43)^3, Z(43)^28, Z(43)^36 ], [ Z(43)^4, Z(43)^30, Z(43)^27 ],
    [ Z(43)^4, Z(43)^24, Z(43)^39 ], [ Z(43)^4, Z(43)^18, Z(43)^9 ], 
    [ Z(43)^4, Z(43)^12, Z(43)^21 ], [ Z(43)^4, Z(43)^6, Z(43)^33 ], 
    [ Z(43)^4, Z(43)^0, Z(43)^3 ], [ Z(43)^4, Z(43)^36, Z(43)^15 ] ]
    gap> Length(O);
    24
    
  ------------------------------------------------------------------
  
  Informally,  a  divisor on a curve is a formal integer linear combination of
  points  on  the  curve, D=m_1P_1+...+m_kP_k, where the m_i are integers (the
  ``multiplicity''  of P_i in D) and P_i are (F-rational) points on the affine
  plane  curve.  In  other  words, a divisor is an element of the free abelian
  group generated by the F-rational affine points on the curve. The support of
  a  divisor  D is simply the set of points which occurs in the sum defining D
  with  non-zero  ``multiplicity''.  The  data  structure  for a divisor on an
  affine plane curve is a record having the following components:
  
  --    the coefficients (the integer weights of the points in the support),
  
  --    the support,
  
  --    the  curve,  itself  a  record  which  has  components: polynomial and
        polynomial ring.
  
  5.7-5 DivisorOnAffineCurve
  
  > DivisorOnAffineCurve( cdivsdivcrv ) ______________________________function
  
  This  is the command you use to define a divisor in GUAVA. Of course, crv is
  the  curve  on which the divisor lives, cdiv is the list of coefficients (or
  ``multiplicities''), sdiv is the list of points on crv in the support.
  
  ---------------------------  Example  ----------------------------
    gap> q:=5;
    5
    gap> F:=GF(q);
    GF(5)
    gap> R:=PolynomialRing(F,2);;
    gap> vars:=IndeterminatesOfPolynomialRing(R);
    [ x_1, x_2 ]
    gap> x:=vars[1];
    x_1
    gap> y:=vars[2];
    x_2
    gap> crv:=AffineCurve(y^3-x^3-x-1,R);
    rec( ring := PolynomialRing(..., [ x_1, x_2 ]), 
         polynomial := -x_1^3+x_2^3-x_1-Z(5)^0 )
    gap> Pts:=AffinePointsOnCurve(crv,R,F);;
    gap> supp:=[Pts[1],Pts[2]];
    [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5) ] ]
    gap> D:=DivisorOnAffineCurve([1,-1],supp,crv);
    rec( coeffs := [ 1, -1 ], 
         support := [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5) ] ],
         curve := rec( ring := PolynomialRing(..., [ x_1, x_2 ]), 
                       polynomial := -x_1^3+x_2^3-x_1-Z(5)^0 ) )
    
  ------------------------------------------------------------------
  
  5.7-6 DivisorAddition 
  
  > DivisorAddition ( D1D2 ) _________________________________________function
  
  If   D_1=m_1P_1+...+m_kP_k   and  D_2=n_1P_1+...+n_kP_k  are  divisors  then
  D_1+D_2=(m_1+n_1)P_1+...+(m_k+n_k)P_k.
  
  5.7-7 DivisorDegree 
  
  > DivisorDegree ( D ) ______________________________________________function
  
  If D=m_1P_1+...+m_kP_k is a divisor then the degree is m_1+...+m_k.
  
  5.7-8 DivisorNegate 
  
  > DivisorNegate ( D ) ______________________________________________function
  
  Self-explanatory.
  
  5.7-9 DivisorIsZero 
  
  > DivisorIsZero ( D ) ______________________________________________function
  
  Self-explanatory.
  
  5.7-10 DivisorsEqual 
  
  > DivisorsEqual ( D1D2 ) ___________________________________________function
  
  Self-explanatory.
  
  5.7-11 DivisorGCD 
  
  > DivisorGCD ( D1D2 ) ______________________________________________function
  
  If  m=p_1^e_1...p_k^e_k  and n=p_1^f_1...p_k^f_k are two integers then their
  greatest  common  divisor is GCD(m,n)=p_1^min(e_1,f_1)...p_k^min(e_k,f_k). A
  similar    definition    works   for   two   divisors   on   a   curve.   If
  D_1=e_1P_1+...+e_kP_k and D_2n=f_1P_1+...+f_kP_k are two divisors on a curve
  then         their         greatest         common         divisor        is
  GCD(m,n)=min(e_1,f_1)P_1+...+min(e_k,f_k)P_k.  This  function  computes this
  quantity.
  
  5.7-12 DivisorLCM 
  
  > DivisorLCM ( D1D2 ) ______________________________________________function
  
  If  m=p_1^e_1...p_k^e_k  and n=p_1^f_1...p_k^f_k are two integers then their
  least  common  multiple  is  LCM(m,n)=p_1^max(e_1,f_1)...p_k^max(e_k,f_k). A
  similar    definition    works   for   two   divisors   on   a   curve.   If
  D_1=e_1P_1+...+e_kP_k  and D_2=f_1P_1+...+f_kP_k are two divisors on a curve
  then          their         least         common         multiple         is
  LCM(m,n)=max(e_1,f_1)P_1+...+max(e_k,f_k)P_k.  This  function  computes this
  quantity.
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R1:=PolynomialRing(F,["a"]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
    gap> b:=X(F,"b",var1);
    b
    gap> var2:=Concatenation(var1,[b]);
    [ a, b ]
    gap> R2:=PolynomialRing(F,var2);
    PolynomialRing(..., [ a, b ])
    gap> crvP1:=AffineCurve(b,R2);
    rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
    gap> div1:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
    rec( coeffs := [ 1, 2, 3, 4 ], 
         support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> DivisorDegree(div1);
    10
    gap> div2:=DivisorOnAffineCurve([1,2,3,4],[Z(11),Z(11)^2,Z(11)^3,Z(11)^4],crvP1);
    rec( coeffs := [ 1, 2, 3, 4 ], 
         support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4 ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> DivisorDegree(div2);
    10
    gap> div3:=DivisorAddition(div1,div2);
    rec( coeffs := [ 5, 3, 5, 4, 3 ], 
         support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4, Z(11)^7 ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> DivisorDegree(div3);
    20
    gap> DivisorIsEffective(div1);
    true
    gap> DivisorIsEffective(div2);
    true
    gap>
    gap> ndiv1:=DivisorNegate(div1);
    rec( coeffs := [ -1, -2, -3, -4 ], 
         support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> zdiv:=DivisorAddition(div1,ndiv1);
    rec( coeffs := [ 0, 0, 0, 0 ], 
         support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^7 ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> DivisorIsZero(zdiv);
    true
    gap> div_gcd:=DivisorGCD(div1,div2);
    rec( coeffs := [ 1, 1, 2, 0, 0 ], 
         support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4, Z(11)^7 ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> div_lcm:=DivisorLCM(div1,div2);
    rec( coeffs := [ 4, 2, 3, 4, 3 ], 
         support := [ Z(11), Z(11)^2, Z(11)^3, Z(11)^4, Z(11)^7 ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> DivisorDegree(div_gcd);
    4
    gap> DivisorDegree(div_lcm);
    16
    gap> DivisorEqual(div3,DivisorAddition(div_gcd,div_lcm));
    true
    
  ------------------------------------------------------------------
  
  Let G denote a finite subgroup of PGL(2,F) and let D denote a divisor on the
  projective  line  P^1(F). If G leaves D unchanged (it may permute the points
  in  the support of D but must preserve their sum in D) then the Riemann-Roch
  space  L(D)  is  a  G-module.  The commands in this section help explore the
  G-module structure of L(D) in the case then the ground field F is finite.
  
  5.7-13 RiemannRochSpaceBasisFunctionP1 
  
  > RiemannRochSpaceBasisFunctionP1 ( PkR2 ) _________________________function
  
  Input: R2 is a polynomial ring in two variables, say F[x,y]; P is an element
  of the base field, say F; k is an integer. Output: 1/(x-P)^k
  
  5.7-14 DivisorOfRationalFunctionP1 
  
  > DivisorOfRationalFunctionP1 ( f, R ) _____________________________function
  
  Here  R  =  F[x,y]  is  a  polynomial  ring  in the variables x,y and f is a
  rational  function  of  x.  Simply  returns  the  principal  divisor on P}^1
  associated to f.
  
  ---------------------------  Example  ----------------------------
    
    gap> F:=GF(11);
    GF(11)
    gap> R1:=PolynomialRing(F,["a"]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
    gap> b:=X(F,"b",var1);
    b
    gap> var2:=Concatenation(var1,[b]);
    [ a, b ]
    gap> R2:=PolynomialRing(F,var2);
    PolynomialRing(..., [ a, b ])
    gap> pt:=Z(11);
    Z(11)
    gap> f:=RiemannRochSpaceBasisFunctionP1(pt,2,R2);
    (Z(11)^0)/(a^2+Z(11)^7*a+Z(11)^2)
    gap> Df:=DivisorOfRationalFunctionP1(f,R2);
    rec( coeffs := [ -2 ], support := [ Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := a )
       )
    gap> Df.support;
    [ Z(11) ]
    gap> F:=GF(11);;
    gap> R:=PolynomialRing(F,2);;
    gap> vars:=IndeterminatesOfPolynomialRing(R);;
    gap> a:=vars[1];;
    gap> b:=vars[2];;
    gap> f:=(a^4+Z(11)^6*a^3-a^2+Z(11)^7*a+Z(11)^0)/(a^4+Z(11)*a^2+Z(11)^7*a+Z(11));;
    gap> divf:=DivisorOfRationalFunctionP1(f,R);
    rec( coeffs := [ 3, 1 ], support := [ Z(11), Z(11)^7 ],
      curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := a ) )
    gap> denf:=DenominatorOfRationalFunction(f); RootsOfUPol(denf);
    a^4+Z(11)*a^2+Z(11)^7*a+Z(11)
    [  ]
    gap> numf:=NumeratorOfRationalFunction(f); RootsOfUPol(numf);
    a^4+Z(11)^6*a^3-a^2+Z(11)^7*a+Z(11)^0
    [ Z(11)^7, Z(11), Z(11), Z(11) ]
    
  ------------------------------------------------------------------
  
  5.7-15 RiemannRochSpaceBasisP1 
  
  > RiemannRochSpaceBasisP1 ( D ) ____________________________________function
  
  This  returns  the  basis  of  the Riemann-Roch space L(D) associated to the
  divisor D on the projective line P}^1.
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R1:=PolynomialRing(F,["a"]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
    gap> b:=X(F,"b",var1);
    b
    gap> var2:=Concatenation(var1,[b]);
    [ a, b ]
    gap> R2:=PolynomialRing(F,var2);
    PolynomialRing(..., [ a, b ])
    gap> crvP1:=AffineCurve(b,R2);
    rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
    gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
    rec( coeffs := [ 1, 2, 3, 4 ], 
         support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> B:=RiemannRochSpaceBasisP1(D);
    [ Z(11)^0, (Z(11)^0)/(a+Z(11)^7), (Z(11)^0)/(a+Z(11)^8), 
    (Z(11)^0)/(a^2+Z(11)^9*a+Z(11)^6), (Z(11)^0)/(a+Z(11)^2), 
    (Z(11)^0)/(a^2+Z(11)^3*a+Z(11)^4), (Z(11)^0)/(a^3+a^2+Z(11)^2*a+Z(11)^6),
      (Z(11)^0)/(a+Z(11)^6), (Z(11)^0)/(a^2+Z(11)^7*a+Z(11)^2), 
    (Z(11)^0)/(a^3+Z(11)^4*a^2+a+Z(11)^8), 
    (Z(11)^0)/(a^4+Z(11)^8*a^3+Z(11)*a^2+a+Z(11)^4) ]
    gap> DivisorOfRationalFunctionP1(B[1],R2).support;
    [  ]
    gap> DivisorOfRationalFunctionP1(B[2],R2).support;
    [ Z(11)^2 ]
    gap> DivisorOfRationalFunctionP1(B[3],R2).support;
    [ Z(11)^3 ]
    gap> DivisorOfRationalFunctionP1(B[4],R2).support;
    [ Z(11)^3 ]
    gap> DivisorOfRationalFunctionP1(B[5],R2).support;
    [ Z(11)^7 ]
    gap> DivisorOfRationalFunctionP1(B[6],R2).support;
    [ Z(11)^7 ]
    gap> DivisorOfRationalFunctionP1(B[7],R2).support;
    [ Z(11)^7 ]
    gap> DivisorOfRationalFunctionP1(B[8],R2).support;
    [ Z(11) ]
    gap> DivisorOfRationalFunctionP1(B[9],R2).support;
    [ Z(11) ]
    gap> DivisorOfRationalFunctionP1(B[10],R2).support;
    [ Z(11) ]
    gap> DivisorOfRationalFunctionP1(B[11],R2).support;
    [ Z(11) ]
    
  ------------------------------------------------------------------
  
  5.7-16 MoebiusTransformation 
  
  > MoebiusTransformation ( AR ) _____________________________________function
  
  The arguments are a 2x 2 matrix A with entries in a field F and a polynomial
  ring Rof one variable, say F[x]. This function returns the linear fractional
  transformatio  associated  to  A. These transformations can be composed with
  each other using GAP's Value command.
  
  5.7-17 ActionMoebiusTransformationOnFunction 
  
  > ActionMoebiusTransformationOnFunction ( AfR2 ) ___________________function
  
  The  arguments  are  a  2x  2 matrix A with entries in a field F, a rational
  function  f  of  one  variable,  say  in F(x), and a polynomial ring R2, say
  F[x,y].  This function simply returns the composition of the function f with
  the Möbius transformation of A.
  
  5.7-18 ActionMoebiusTransformationOnDivisorP1 
  
  > ActionMoebiusTransformationOnDivisorP1 ( AD ) ____________________function
  
  A Möbius transformation may be regarded as an automorphism of the projective
  line  P^1. This function simply returns the image of the divisor D under the
  Möbius      transformation      defined      by     A,     provided     that
  IsActionMoebiusTransformationOnDivisorDefinedP1(A,D) returns true.
  
  5.7-19 IsActionMoebiusTransformationOnDivisorDefinedP1 
  
  > IsActionMoebiusTransformationOnDivisorDefinedP1 ( AD ) ___________function
  
  Returns  true  of  none of the points in the support of the divisor D is the
  pole of the Möbius transformation.
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R1:=PolynomialRing(F,["a"]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
    gap> b:=X(F,"b",var1);
    b
    gap> var2:=Concatenation(var1,[b]);
    [ a, b ]
    gap> R2:=PolynomialRing(F,var2);
    PolynomialRing(..., [ a, b ])
    gap> crvP1:=AffineCurve(b,R2);
    rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
    gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
    rec( coeffs := [ 1, 2, 3, 4 ], 
         support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> A:=Z(11)^0*[[1,2],[1,4]];
    [ [ Z(11)^0, Z(11) ], [ Z(11)^0, Z(11)^2 ] ]
    gap> ActionMoebiusTransformationOnDivisorDefinedP1(A,D);
    false
    gap> A:=Z(11)^0*[[1,2],[3,4]];
    [ [ Z(11)^0, Z(11) ], [ Z(11)^8, Z(11)^2 ] ]
    gap> ActionMoebiusTransformationOnDivisorDefinedP1(A,D);
    true
    gap> ActionMoebiusTransformationOnDivisorP1(A,D);
    rec( coeffs := [ 1, 2, 3, 4 ], 
         support := [ Z(11)^5, Z(11)^6, Z(11)^8, Z(11)^7 ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> f:=MoebiusTransformation(A,R1);
    (a+Z(11))/(Z(11)^8*a+Z(11)^2)
    gap> ActionMoebiusTransformationOnFunction(A,f,R1);
    -Z(11)^0+Z(11)^3*a^-1
    
  ------------------------------------------------------------------
  
  5.7-20 DivisorAutomorphismGroupP1 
  
  > DivisorAutomorphismGroupP1 ( D ) _________________________________function
  
  Input:  A divisor D on P^1(F), where F is a finite field. Output: A subgroup
  Aut(D)subset Aut(P^1) preserving D.
  
  Very slow.
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R1:=PolynomialRing(F,["a"]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
    gap> b:=X(F,"b",var1);
    b
    gap> var2:=Concatenation(var1,[b]);
    [ a, b ]
    gap> R2:=PolynomialRing(F,var2);
    PolynomialRing(..., [ a, b ])
    gap> crvP1:=AffineCurve(b,R2);
    rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
    gap> D:=DivisorOnAffineCurve([1,2,3,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
    rec( coeffs := [ 1, 2, 3, 4 ], 
         support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> agp:=DivisorAutomorphismGroupP1(D);; time;
    7305
    gap> IdGroup(agp);
    [ 10, 2 ]
    
  ------------------------------------------------------------------
  
  5.7-21 MatrixRepresentationOnRiemannRochSpaceP1 
  
  > MatrixRepresentationOnRiemannRochSpaceP1 ( gD ) __________________function
  
  Input: An element g in G, a subgroup of Aut(D)subset Aut(P^1), and a divisor
  D  on  P^1(F),  where  F is a finite field. Output: a dx d matrix, where d =
  dim, L(D), representing the action of g on L(D).
  
  Note: g sends L(D) to r* L(D), where r is a polynomial of degree 1 depending
  on g and D.
  
  Also very slow.
  
  The GAP command BrauerCharacterValue can be used to ``lift'' the eigenvalues
  of this matrix to the complex numbers.
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R1:=PolynomialRing(F,["a"]);;
    gap> var1:=IndeterminatesOfPolynomialRing(R1);; a:=var1[1];;
    gap> b:=X(F,"b",var1);
    b
    gap> var2:=Concatenation(var1,[b]);
    [ a, b ]
    gap> R2:=PolynomialRing(F,var2);
    PolynomialRing(..., [ a, b ])
    gap> crvP1:=AffineCurve(b,R2);
    rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b )
    gap> D:=DivisorOnAffineCurve([1,1,1,4],[Z(11)^2,Z(11)^3,Z(11)^7,Z(11)],crvP1);
    rec( coeffs := [ 1, 1, 1, 4 ],  
         support := [ Z(11)^2, Z(11)^3, Z(11)^7, Z(11) ], 
         curve := rec( ring := PolynomialRing(..., [ a, b ]), polynomial := b ) )
    gap> agp:=DivisorAutomorphismGroupP1(D);; time;
    7198
    gap> IdGroup(agp);
    [ 20, 5 ]
    gap> g:=Random(agp);
    [ [ Z(11)^4, Z(11)^9 ], [ Z(11)^0, Z(11)^9 ] ]
    gap> rho:=MatrixRepresentationOnRiemannRochSpaceP1(g,D);
    [ [ Z(11)^0, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], 
    [ Z(11)^0, 0*Z(11), 0*Z(11), Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ],
      [ Z(11)^7, 0*Z(11), Z(11)^5, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], 
    [ Z(11)^4, Z(11)^9, 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ],
      [ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^5, 0*Z(11), 0*Z(11), 0*Z(11) ], 
    [ Z(11)^4, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8, Z(11)^0, 0*Z(11), 0*Z(11) ],
      [ Z(11)^6, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^7, Z(11)^0, Z(11)^5, 0*Z(11) ], 
    [ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3, Z(11)^3, Z(11)^9, Z(11)^0 ] ]
    gap> Display(rho);
      1  .  .  .  .  .  .  .
      1  .  .  2  .  .  .  .
      7  . 10  .  .  .  .  .
      5  6  .  .  .  .  .  .
      4  .  .  . 10  .  .  .
      5  .  .  .  3  1  .  .
      9  .  .  .  7  1 10  .
      3  .  .  .  8  8  6  1
    
  ------------------------------------------------------------------
  
  5.7-22 GoppaCodeClassical
  
  > GoppaCodeClassical( div, pts ) ___________________________________function
  
  Input:  A  divisor  div on the projective line P}^1(F) over a finite field F
  and  a  list  pts of points P_1,...,P_nsubset F disjoint from the support of
  div.
  Output:  The classical (evaluation) Goppa code associated to this data. This
  is the code
  
  
       C=\{(f(P_1),...,f(P_n))\ |\ f\in L(D)_F\}.
  
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);;
    gap> R2:=PolynomialRing(F,2);;
    gap> vars:=IndeterminatesOfPolynomialRing(R2);;
    gap> a:=vars[1];;b:=vars[2];;
    gap> cdiv:=[ 1, 2, -1, -2 ];
    [ 1, 2, -1, -2 ]
    gap> sdiv:=[ Z(11)^2, Z(11)^3, Z(11)^6, Z(11)^9 ];
    [ Z(11)^2, Z(11)^3, Z(11)^6, Z(11)^9 ]
    gap> crv:=rec(polynomial:=b,ring:=R2);
    rec( polynomial := x_2, ring := PolynomialRing(..., [ x_1, x_2 ]) )
    gap> div:=DivisorOnAffineCurve(cdiv,sdiv,crv);
    rec( coeffs := [ 1, 2, -1, -2 ], support := [ Z(11)^2, Z(11)^3, Z(11)^6, Z(11)^9 ],
      curve := rec( polynomial := x_2, ring := PolynomialRing(..., [ x_1, x_2 ]) ) )
    gap> pts:=Difference(Elements(GF(11)),div.support);
    [ 0*Z(11), Z(11)^0, Z(11), Z(11)^4, Z(11)^5, Z(11)^7, Z(11)^8 ]
    gap> C:=GoppaCodeClassical(div,pts);
    a linear [7,2,1..6]4..5 code defined by generator matrix over GF(11)
    gap> MinimumDistance(C);
    6
  ------------------------------------------------------------------
  
  5.7-23 EvaluationBivariateCode
  
  > EvaluationBivariateCode( pts, L, crv ) ___________________________function
  
  Input:  pts  is  a  set  of  affine  points  on crv, L is a list of rational
  functions on crv.
  Output: The evaluation code associated to the points in pts and functions in
  L,  but  specifically  for  affine  plane curves and this function checks if
  points  are  "bad"  (if  so removes them from the list pts automatically). A
  point  is  ``bad''  if  either  it  does  not lie on the set of non-singular
  F-rational points (places of degree 1) on the curve.
  
  Very  similar  to  EvaluationCode  (see  EvaluationCode  (5.6-1)  for a more
  general construction).
  
  5.7-24 EvaluationBivariateCodeNC
  
  > EvaluationBivariateCodeNC( pts, L, crv ) _________________________function
  
  As in EvaluationBivariateCode but does not check if the points are ``bad''.
  
  Input:  pts  is  a  set  of  affine  points  on crv, L is a list of rational
  functions on crv.
  Output: The evaluation code associated to the points in pts and functions in
  L.
  
  ---------------------------  Example  ----------------------------
    gap> q:=4;;
    gap> F:=GF(q^2);;
    gap> R:=PolynomialRing(F,2);;
    gap> vars:=IndeterminatesOfPolynomialRing(R);;
    gap> x:=vars[1];;
    gap> y:=vars[2];;
    gap> crv:=AffineCurve(y^q+y-x^(q+1),R);
    rec( ring := PolynomialRing(..., [ x_1, x_2 ]), polynomial := x_1^5+x_2^4+x_2 )
    gap> L:=[ x^0, x, x^2*y^-1 ];
    [ Z(2)^0, x_1, x_1^2/x_2 ]
    gap> Pts:=AffinePointsOnCurve(crv.polynomial,crv.ring,F);;
    gap> C1:=EvaluationBivariateCode(Pts,L,crv); time;
    
    
     Automatically removed the following 'bad' points (either a pole or not 
     on the curve):
    [ [ 0*Z(2), 0*Z(2) ] ]
    
    a linear [63,3,1..60]51..59  evaluation code over GF(16)
    52
    gap> P:=Difference(Pts,[[ 0*Z(2^4)^0, 0*Z(2)^0 ]]);;
    gap> C2:=EvaluationBivariateCodeNC(P,L,crv); time;
    a linear [63,3,1..60]51..59  evaluation code over GF(16)
    48
    gap> C3:=EvaluationCode(P,L,R); time;
    a linear [63,3,1..56]51..59  evaluation code over GF(16)
    58
    gap> MinimumDistance(C1);
    56
    gap> MinimumDistance(C2);
    56
    gap> MinimumDistance(C3);
    56
    gap>
  ------------------------------------------------------------------
  
  5.7-25 OnePointAGCode
  
  > OnePointAGCode( f, P, m, R ) _____________________________________function
  
  Input:  f  is  a  polynomial  in R=F[x,y], where F is a finite field, m is a
  positive  integer  (the multiplicity of the `point at infinity' infty on the
  curve f(x,y)=0), P is a list of n points on the curve over F.
  Output: The C which is the image of the evaluation map
  
  
       Eval_P:L(m \cdot \infty)\rightarrow F^n,
  
  
  given  by flongmapsto (f(p_1),...,f(p_n)), where p_i in P. Here L(m * infty)
  denotes  the  Riemann-Roch space of the divisor m * infty on the curve. This
  has a basis consisting of monomials x^iy^j, where (i,j) range over a polygon
  depending on m and f(x,y). For more details on the Riemann-Roch space of the
  divisor m * infty see Proposition III.10.5 in Stichtenoth [Sti93].
  
  This command returns a "record" object C with several extra components (type
  NamesOfComponents(C) to see them all): C!.points (namely P), C!.multiplicity
  (namely m), C!.curve (namely f) and C!.ring (namely R).
  
  ---------------------------  Example  ----------------------------
    gap> F:=GF(11);
    GF(11)
    gap> R := PolynomialRing(F,["x","y"]);
    PolynomialRing(..., [ x, y ])
    gap> indets := IndeterminatesOfPolynomialRing(R);
    [ x, y ]
    gap> x:=indets[1]; y:=indets[2];
    x
    y
    gap> P:=AffinePointsOnCurve(y^2-x^11+x,R,F);;
    gap> C:=OnePointAGCode(y^2-x^11+x,P,15,R);
    a linear [11,8,1..0]2..3  one-point AG code over GF(11)
    gap> MinimumDistance(C);
    4
    gap> Pts:=List([1,2,4,6,7,8,9,10,11],i->P[i]);;
    gap> C:=OnePointAGCode(y^2-x^11+x,PT,10,R);
    a linear [9,6,1..4]2..3 one-point AG code over GF(11)
    gap> MinimumDistance(C);
    4
  ------------------------------------------------------------------
  
  See EvaluationCode (5.6-1) for a more general construction.
  
  
  5.8 Low-Density Parity-Check Codes
  
  Low-density  parity-check  (LDPC)  codes  form a class of linear block codes
  whose  parity-check  matrix--as the name implies, is sparse. LDPC codes were
  introduced  by  Robert  Gallager in 1962 [Gal62] as his PhD work. Due to the
  decoding   complexity  for  the  technology  back  then,  these  codes  were
  forgotten.  Not  until  the  late  1990s,  these codes were rediscovered and
  research  results  have  shown  that  LDPC  codes can achieve near Shannon's
  capacity  performance  provided  that  their block length is long enough and
  soft-decision  iterative  decoder  is  employed.  Note that the bit-flipping
  decoder  (see  BitFlipDecoder) is a hard-decision decoder and hence capacity
  achieving  performance  cannot  be  achieved  despite  having  a large block
  length.
  
  Based  on  the  structure  of  their  parity-check matrix, LDPC codes may be
  categorised into two classes:
  
  --    Regular LDPC codes
  
        This class of codes has a fixed number of non zeros per column and per
        row  in  their parity-check matrix. These codes are usually denoted as
        (n,j,k)  codes  where  n  is  the block length, j is the number of non
        zeros  per  column in their parity-check matrix and k is the number of
        non zeros per row in their parity-check matrix.
  
  --    Irregular LDPC codes
  
        The  irregular codes, on the other hand, do not have a fixed number of
        non  zeros per column and row in their parity-check matrix. This class
        of  codes are commonly represented by two polynomials which denote the
        distribution  of  the  number  of  non  zeros  in the columns and rows
        respectively of their parity-check matrix.
  
  5.8-1 QCLDPCCodeFromGroup
  
  > QCLDPCCodeFromGroup( m, j, k ) ___________________________________function
  
  QCLDCCodeFromGroup  produces  an (n,j,k) regular quasi-cyclic LDPC code over
  GF(2)  of  block length n = mk. The term quasi-cyclic in the context of LDPC
  codes  typically  refers  to  LDPC codes whose parity-check matrix H has the
  following form
  
  
      -                                              -
      |  I_P(0,0)  |  I_P(0,1)  | ... |  I_P(0,k-1)  |
      |  I_P(1,0)  |  I_P(1,1)  | ... |  I_P(1,k-1)  |
  H = |      .     |     .      |  .  |       .      |,
      |      .     |     .      |  .  |       .      |
      | I_P(j-1,0) | I_P(j-1,1) | ... | I_P(j-1,k-1) |
      -                                              -
  		  where I_P(s,t) is an identity matrix of size m x m which has been shifted so
  that the 1 on the first row starts at position P(s,t).
  
  Let  F  be  a  multiplicative  group  of integers modulo m. If m is a prime,
  F=0,1,...,m-1,  otherwise  F contains a set of integers which are relatively
  prime to m. In both cases, the order of F is equal to phi(m). Let a and b be
  non  zeros  of  F  such that the orders of a and b are k and j respectively.
  Note  that  the  integers  a and b can always be found provided that k and j
  respectively  divide  phi(m).  Having obtain integers a and b, construct the
  following  j x k matrix P so that the element at row s and column t is given
  by P(s,t) = a^tb^s, i.e.
  
  
      -                                             -
      |    1    |     a    | . . . |      a^{k-1}   |
      |    b    |    ab    | . . . |     a^{k-1}b   |
  P = |    .    |    .     |   .   |        .       |.
      |    .    |    .     |   .   |        .       |
      | b^{j-1} | ab^{j-1} | . . . | a^{k-1}b^{j-1} |
      -                                             -
  		  The parity-check matrix H of the LDPC code can be obtained by replacing each
  element of matrix P, i.e. P(s,t), with an identity matrix I_P(s,t) of size m
  x m.
  
  The code rate R of the constructed code is given by
  
  
       R \geq 1 - \frac{j}{k}
  
  
  where  the  sign  >=  is  due to the possible existence of some non linearly
  independent  rows in H. For more details, refer to the paper by Tanner et al
  [S}04].
  
  ---------------------------  Example  ----------------------------
    gap> C := QCLDPCCodeFromGroup(7,2,3);
    a linear [21,8,1..6]5..10 low-density parity-check code over GF(2)
    gap> MinimumWeight(C);
    [21,8] linear code over GF(2) - minimum weight evaluation
    Known lower-bound: 1
    There are 3 generator matrices, ranks : 8 8 5 
    The weight of the minimum weight codeword satisfies 0 mod 2 congruence
    Enumerating codewords with information weight 1 (w=1)
        Found new minimum weight 6
    Number of matrices required for codeword enumeration 2
    Completed w= 1, 24 codewords enumerated, lower-bound 4, upper-bound 6
    Termination expected with information weight 2 at matrix 1
    -----------------------------------------------------------------------------
    Enumerating codewords with information weight 2 (w=2) using 1 matrices
    Completed w= 2, 28 codewords enumerated, lower-bound 6, upper-bound 6
    -----------------------------------------------------------------------------
    Minimum weight: 6
    6
    gap> # The quasi-cyclic structure is obvious from the check matrix
    gap> Display( CheckMat(C) );
     1 . . . . . . . 1 . . . . . . . . 1 . . .
     . 1 . . . . . . . 1 . . . . . . . . 1 . .
     . . 1 . . . . . . . 1 . . . . . . . . 1 .
     . . . 1 . . . . . . . 1 . . . . . . . . 1
     . . . . 1 . . . . . . . 1 . 1 . . . . . .
     . . . . . 1 . . . . . . . 1 . 1 . . . . .
     . . . . . . 1 1 . . . . . . . . 1 . . . .
     . . . . . 1 . . . . . 1 . . . . 1 . . . .
     . . . . . . 1 . . . . . 1 . . . . 1 . . .
     1 . . . . . . . . . . . . 1 . . . . 1 . .
     . 1 . . . . . 1 . . . . . . . . . . . 1 .
     . . 1 . . . . . 1 . . . . . . . . . . . 1
     . . . 1 . . . . . 1 . . . . 1 . . . . . .
     . . . . 1 . . . . . 1 . . . . 1 . . . . .
    gap> # This is the famous [155,64,20] quasi-cyclic LDPC codes
    gap> C := QCLDPCCodeFromGroup(31,3,5);
    a linear [155,64,1..24]24..77 low-density parity-check code over GF(2)
    gap> # An example using non prime m, it may take a while to construct this code
    gap> C := QCLDPCCodeFromGroup(356,4,8);
    a linear [2848,1436,1..120]312..1412 low-density parity-check code over GF(2)
  ------------------------------------------------------------------