Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 1498

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

<!-- 
  HAPPRIME - resolution.xml.in
  Function documentation template file for HAPprime
  Paul Smith

  Copyright (C)  2007-2008
  Paul Smith
  National University of Ireland Galway

  $Id: functions.xml.in 200 2008-02-05 14:29:47Z pas $
-->

<!-- ********************************************************** -->
<Chapter  Label="Resolution">
  <Heading>Resolutions</Heading>

  A free &FG;-resolution of an &FG;-module <M>M</M> is a sequence of module 
  homomorphisms
  <Alt Only="LaTeX">
    <Display>
      \ldots \rightarrow M_{n+1} \rightarrow M_n \rightarrow M_{n-1} \rightarrow \ldots
        \rightarrow M_1 \rightarrow M_0 \twoheadrightarrow M
    </Display>
  </Alt>
  <Alt Not="LaTeX">
    <Display>
      ... ---> M_(n+1) ---> M_n ---> M_(n-1) ---> ... ---> M_1 ---> M_0 --->> M
    </Display>
  </Alt>
  Where each <M>M_n</M> is a free <M>\mathbb{F}G</M>-module and the image of 
  <M>d_{n+1}: M_{n+1} \rightarrow M_{n}</M> equals the kernel of 
  <M>d_n: M_n \rightarrow M_{n-1}</M> for all <M>n > 0</M>. 
  
  <Section>
    <Heading>The <K>HAPResolution</K> datatype in &HAPprime;</Heading>
    
    Both &HAP; and &HAPprime; use the <K>HAPResolution</K> datatype to store resolutions,
    and you should refer to the &HAP; documentation for full details of this 
    datatype. With resolutions computed by &HAP;, the boundary maps which define
    the module homomorphisms are stored as lists of <M>\mathbb{Z}G</M>-module
    words, each of which is an integer pair <C>[i,g]</C>. By contrast, when
    &HAPprime; computes resolutions it stores the boundary maps as lists of 
    &G;-generating vectors (as used in <K>FpGModuleHomomorphismGF</K>, see 
    Chapter <Ref Chap="FpGModuleGFHom"/>). Over small finite fields (and in
    particular in GF(2)), these 
    compressed vectors take far less memory, saving at least a factor of two for
    long resolutions. The different data storage method is entirely an internal
    change - as far as the used is concerned, both versions behave exactly the
    same.
  </Section>
  
  <Section>
    <Heading>Implementation: Constructing resolutions</Heading>
      
      Given the definition of a free &FG;-resolution given above, a resolution 
      of a module <M>M</M> can be calculated by construction. If there are 
      <M>k</M> generators for <M>M</M>, we can set <M>M_0</M> equal to the
      free &FG;-module <M>(\mathbb{F}G)^k</M>, and the module 
      homomorphism <M>d_0 : M_0 \rightarrow M</M> to be the one that sends the 
      <M>i</M>th standard generator of <M>(\mathbb{F}G)^k</M> to the <M>i</M>th 
      element of <M>M</M>. We can now recursively construct the other modules
      and module homomorphisms in a similar manner. Given a boundary 
      homomorphism <M>d_n = M_n \rightarrow M_{n-1}</M>, the kernel of this can 
      be calculated. Then given a set of generators (ideally a small set) 
      for <M>ker(d_n)</M>, we can set 
      <M>M_{n+1} = (\mathbb{F}G)^{|ker(d_n)|}</M>, and the new module 
      homomorphism <M>d_{n+1}</M> to be the one mapping the standard generators 
      of <M>M_{n+1}</M> onto the generators of <M>ker(d_n)</M>.
      <P/>
      &HAPprime; implements the construction of resolutions using this method.
      The construction is divided into two stages. The creation of the first 
      homomorphism in the resolution for <M>M</M> is performed by the function 
      <Ref Oper="LengthZeroResolutionPrimePowerGroup"/>, or for a resolution of
      the trivial &FG;-module &FF;, the first two homomorphisms can be 
      stated without calculation using 
      <Ref Oper="LengthOneResolutionPrimePowerGroup"/>. Once this initial 
      sequence is created, a longer resolution can be created by repeated 
      application of one of <Ref Oper="ExtendResolutionPrimePowerGroupGF" BookName="HAPprime"/>, 
      <Ref Oper="ExtendResolutionPrimePowerGroupRadical" BookName="HAPprime"/> or
      <Ref Oper="ExtendResolutionPrimePowerGroupGF2" BookName="HAPprime"/>, each of which 
      extends the resolution by one stage by constructing a new module and 
      homomorphism mapping onto the minimal generators of the kernel of the 
      last homomorphism of the input resolution. These extension functions
      differ in speed and the amount of memory that they use.
      The lowest-memory version, 
      <Ref Oper="ExtendResolutionPrimePowerGroupGF" BookName="HAPprime"/>, 
      uses the block structure of module generating vectors (see Section 
      <Ref Subsect="FpGModuleGFalgoblock"/>) and calculates kernels of the 
      boundary homomorphisms using 
      <Ref Oper="KernelOfModuleHomomorphismSplit"/> and finds a minimal set
      of generators for this kernel using 
      <Ref Oper="MinimalGeneratorsModuleGF"/>. The much faster but 
      memory-hungry 
      <Ref Oper="ExtendResolutionPrimePowerGroupRadical" BookName="HAPprime"/>
      uses <Ref Oper="KernelOfModuleHomomorphism"/> and 
      <Ref Oper="MinimalGeneratorsModuleRadical"/> respectively.
      <Ref Oper="ExtendResolutionPrimePowerGroupGF2" BookName="HAPprime"/> uses
      <Ref Oper="KernelOfModuleHomomorphismGF"/> whic partitions the 
      boundary homomorphism matrix using &FG;-reduction. This gives a small 
      memory saving over the <C>Radical</C> method, but can take as long as the
      <C>GF</C> scheme.
      <P/>
      The construction of resolutions of length <M>n</M> is wrapped up in the 
      functions <K>ResolutionPrimePowerGroupGF</K>,
      <K>ResolutionPrimePowerGroupRadical</K> and 
      <K>ResolutionPrimePowerGroupAutoMem</K>, which (as well as the extension 
      functions) are fully documented in Section 
      <Ref Subsect="ResolutionPrimePowerGroup" BookName="HAPprime"/> of the 
      &HAPprime; user manual.
      
      
    </Section>
  
  <Section>
    <Heading>Resolution construction functions</Heading>
    <#Include Label="LengthOneResolutionPrimePowerGroup_DTmanResolution_Con">
    <#Include Label="LengthZeroResolutionPrimePowerGroup_DTmanResolution_Con">
  </Section>

  <Section>
    <Heading>Resolution data access functions</Heading>
    <#Include Label="ResolutionLength_DTmanResolution_Dat">
    <#Include Label="ResolutionGroup_DTmanResolution_Dat">
    <#Include Label="ResolutionFpGModuleGF_DTmanResolution_Dat">
    <#Include Label="ResolutionModuleRank_DTmanResolution_Dat">
    <#Include Label="ResolutionModuleRanks_DTmanResolution_Dat">
    <#Include Label="BoundaryFpGModuleHomomorphismGF_DTmanResolution_Dat">
    <#Include Label="ResolutionsAreEqual_DTmanResolution_Dat">
  </Section>

  <Section Label="ResolutionExample">
    <Heading>Example: Computing and working with resolutions</Heading>

    In this example we construct a minimal free &FG;-resolution of length four 
    for the group <M>G = D_8 \times Q_8</M> of order 64, which will be the 
    sequence
    <Alt Only="LaTeX">
      <Display>
        (\mathbb{F}G)^{22} \rightarrow (\mathbb{F}G)^{15} \rightarrow 
        (\mathbb{F}G)^9 \rightarrow (\mathbb{F}G) \twoheadrightarrow \mathbb{F}
      </Display>
    </Alt>
    <Alt Not="LaTeX">
      <Display>
        (FG)^22 ---> (FG)^15 ---> (FG)^9 ---> FG --->> F
      </Display>
    </Alt>
    We first build each stage explicitly, starting with 
    <Ref Oper="LengthOneResolutionPrimePowerGroup"/> followed by repeated
    applications of 
    <Ref Oper="ExtendResolutionPrimePowerGroupRadical" BookName="HAPprime"/>. We
    extract various properties of this resolution. Finally, we construct
    equivalent resolutions for <M>G</M> using
    <Ref Oper="ResolutionPrimePowerGroupGF" BookName="HAPprime"/> and 
    <Ref Oper="ResolutionPrimePowerGroupGF2" BookName="HAPprime"/> and 
    check that the three are equivalent.
<!--
gap> G := DirectProduct(DihedralGroup(8), SmallGroup(8, 4));
gap> R := LengthOneResolutionPrimePowerGroup(G);
gap> R := ExtendResolutionPrimePowerGroupRadical(R);;
gap> R := ExtendResolutionPrimePowerGroupRadical(R);;
gap> R := ExtendResolutionPrimePowerGroupRadical(R);
gap> #
gap> ResolutionLength(R);
gap> ResolutionGroup(R);
gap> ResolutionModuleRanks(R);
gap> ResolutionModuleRank(R, 3);
gap> M2 := ResolutionFpGModuleGF(R, 2);
gap> d3 := BoundaryFpGModuleHomomorphismGF(R, 3);
gap> ImageOfModuleHomomorphism(d3);
gap> #
gap> S := ResolutionPrimePowerGroupGF(G, 4);
gap> ResolutionsAreEqual(R, S);
gap> T := ResolutionPrimePowerGroupGF2(G, 4);
gap> ResolutionsAreEqual(R, T);
-->
<Example><![CDATA[
gap> G := DirectProduct(DihedralGroup(8), SmallGroup(8, 4));
<pc group of size 64 with 6 generators>
gap> R := LengthOneResolutionPrimePowerGroup(G);
Resolution of length 1 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> R := ExtendResolutionPrimePowerGroupRadical(R);;
gap> R := ExtendResolutionPrimePowerGroupRadical(R);;
gap> R := ExtendResolutionPrimePowerGroupRadical(R);
Resolution of length 4 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> #
gap> ResolutionLength(R);
4
gap> ResolutionGroup(R);
<pc group of size 64 with 6 generators>
gap> ResolutionModuleRanks(R);
[ 4, 9, 15, 22 ]
gap> ResolutionModuleRank(R, 3);
15
gap> M2 := ResolutionFpGModuleGF(R, 2);
Full canonical module FG^9 over the group ring of <pc group of size 64 with
6 generators> in characteristic 2

gap> d3 := BoundaryFpGModuleHomomorphismGF(R, 3);
<Module homomorphism>

gap> ImageOfModuleHomomorphism(d3);
Module over the group ring of <pc group of size 64 with
6 generators> in characteristic 2 with 15 generators in FG^9.

gap> #
gap> S := ResolutionPrimePowerGroupGF(G, 4);
Resolution of length 4 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> ResolutionsAreEqual(R, S);
true
gap> T := ResolutionPrimePowerGroupGF2(G, 4);
Resolution of length 4 in characteristic 2 for <pc group of size 64 with
6 generators> .
No contracting homotopy available.
A partial contracting homotopy is available.

gap> ResolutionsAreEqual(R, T);
true
]]></Example>
  <P/>
  Further example of constructing resolutions and extracting data from them
  are given in Sections <Ref Subsect="FPGModuleExample1"/>, 
  <Ref Subsect="FPGModuleExample2"/>, <Ref Subsect="FPGModuleExample3"/>,
  <Ref Subsect="FPGModuleHomExample1"/> and 
  <Ref Subsect="FPGModuleHomExample2"/> in this reference manual, and also the
  chapter of <Ref Chap="Examples" BookName="HAPprime"/> in the &HAPprime; user
  guide.
  </Section>

  <Section>
    <Heading>Miscellaneous resolution functions</Heading>
    <#Include Label="BestCentralSubgroupForResolutionFiniteExtension_DTmanResolution_Misc">
  </Section>

</Chapter>