Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 1500

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

<!-- 
  HAPPRIME - derivation.xml.in
  Function documentation template file for HAPprime
  Paul Smith

  Copyright (C)  2007-2009
  Paul Smith
  National University of Ireland Galway

  $Id: functions.xml.in 200 2008-02-05 14:29:47Z pas $
-->

<!-- ********************************************************** -->
<Chapter Label="RingHomomorphism">
  <Heading>Ring homomorphisms</Heading>

  A ring homomorphism is a linear function <M>f: R \to S</M> that maps between 
  two rings <M>R</M> and <M>S</M> and which preserves the operations of
  multiplication and addition:
  <Alt Only="LaTeX">
    <Display>
      \begin{align*}
      f(a + b) &amp;= f(a) + f(b) \\
      f(ab) &amp;= f(a)f(b) \\
      f(1) &amp;= 1 
      \end{align*}
    </Display>
  </Alt>
  <Alt Not="LaTeX">
    <Display><![CDATA[
      f(a + b) = f(a) + f(b) 
      f(ab)    = f(a)f(b) 
      f(1)     = 1 
    ]]></Display>
  </Alt>
  
  <Section>
  <Heading>The <K>HAPRingHomomorphism</K> datatype</Heading>
  
  The <K>HAPRingHomomorphism</K> datatype represents a particular class of
  ring homomorphisms (in fact usually ring isomorphisms), namely those between 
  rings presented as quotient rings of polynomial rings, where the source and
  target rings have the same coefficient ring. They represent the mapping
  <Alt Only="LaTeX">
    <Display>
      \frac{R}{I} \to \frac{S}{J} 
    </Display>
  </Alt>
  <Alt Not="LaTeX">
    <Display><![CDATA[
      R/I  ->  S/J
    ]]></Display>
  </Alt>
  where <M>R = k[x_1, \ldots, x_n]</M> and <M>S = k[y_1, \ldots, x_m]</M> and 
  <M>I</M> and <M>J</M> are ideals in <M>R</M> and <M>S</M> respectively.
  <P/>
  Such a ring homomorphism may be specified by the following information 
  <List>
    <Item>a polynomial ring <M>R</M></Item> 
    <Item>a list of polynomials in <M>R</M> that generate the ideal 
      <M>I</M></Item>
    <Item>a list <M>Q = [q_1, ..., q_n]</M> where each <M>q_i \in S/J</M> is 
      the image of the indeterminate <M>x_i</M> in <M>R</M> under the 
      homomorphism.</Item>
  </List>
  The target ideal <M>J</M> is assumed to be the image of <M>I</M> under the
  homomorphism.
  
  <Subsection>
    <Heading>Implementation details</Heading>
    
    Various different internal representations are used for ring homomorphisms 
    in &HAPprime;, depending on the source and target ring. The user need not be 
    concerned with the different representations, which correspond to the 
    five constructors <Ref Func="HAPRingToSubringHomomorphism"/>, 
    <Ref Func="HAPSubringToRingHomomorphism" Label="for relations defined at source"/>, 
    <Ref Func="HAPRingHomomorphismByIndeterminateMap"/>,
    <Ref Func="HAPRingReductionHomomorphism" Label="for ring presentation"/> and
    <Ref Func="HAPZeroRingHomomorphism"/>, and which are hopefully largely
    self-explanatory.
    <P/>
    Most of the provided representations of ring homomorphisms use
    Gröbner bases and polynomial reduction to perform the mapping. This uses
    the <Package>singular</Package> package 
    <Ref Chap="singular" BookName="singular"/> which gives good speed and access 
    to improved monomial orderings. This datatype cannot be used without the 
    <Package>singular</Package> package.
  </Subsection>
  
  <Subsection Label="RingHomEliminationOrdering">
    <Heading>Elimination orderings</Heading>
    Using Gröbner bases to map from one polynomial ring <M>R</M> to another 
    polynomial ring <M>S</M> relies on applying a global ordering to the joint
    ring <M>R \cup S</M>. For all polynomials <M>p \in R</M> and <M>q \in S</M>,
    this ordering must give <M>p &gt; q</M>, so that terms involving elements
    of <M>R</M> will be replaced by those in <M>S</M>. A straightforward 
    solution is to use a lexicographic term ordering 
    which orders the indeterminates of <M>R</M> before those of <M>S</M>. 
    However, computing Gröbner bases using a lexicographic ordering can be much 
    more expensive that with other orderings, or sometimes even a change of the 
    order of indeterminates is enough change the order of the computation. 
    A range of different ordering can be requested by using the &GAP; 
    options stack <Ref Chap="Options Stack" BookName="ref"/>, and setting the
    options <C>EliminationIndexOrder</C> and <C>EliminationBlockOrdering</C> as
    described below.
    <P/>
    The option <C>EliminationIndexOrder</C> determines the indeterminate 
    ordering to use. Possible values are the following strings:
    <List>
      <Item><C>"Forward"</C> (default) Indeterminates are ordered as in 
        the definition of <M>R</M> and <M>S</M>: <M>p_1 &gt; p_2 &gt; \ldots 
        &gt; p_n &gt; q_1 &gt; q_2 &gt; \ldots &gt; q_m</M>.</Item>
      <Item><C>"Reverse"</C> Lexicographic ordering in reverse order to that
        in the definition of <M>R</M> and <M>S</M>: <M>p_n &gt; p_{n-1} &gt; 
        \ldots &gt; p_1 &gt; q_m &gt; q_{m-1} &gt; \ldots &gt; q_1</M>.</Item>
      <Item><C>"Shuffle"</C> Lexicographic ordering using a random shuffle
        of the indeterminates in <M>R</M> and <M>S</M>.</Item>
      <Item><C>"ShuffleNN"</C> where <C>NN</C> is some non-negative 
        integer. This is the same as <C>Shuffle</C>, but using the value
        of <C>NN</C> as the random seed (and hence is deterministic).</Item>
    </List>
    <P/>
    When comparing two monomials, the elimination ordering ensures that the 
    parts of the two monomials involving the indeterminates from <M>R</M> are
    compared first, and then in the event of a tie, the part involving those 
    from <M>S</M> are compared. The option <C>EliminationBlockOrdering</C> 
    determines the monomial ordering to use for each of these two comparisons.
    This is given as a string which is the concatenation of the two required
    orderings. For example, the default ordering is <C>"LexGrlex"</C> which
    means lexicographic ordering over the indeterminates of <M>R</M>, and
    graded lexicographic over the indeterminates of <M>S</M>.
    <List>
      <Item><C>"Lex"</C> Lexicographic ordering, the equivalent of the &GAP; 
        ordering <Ref Func="MonomialLexOrdering" BookName="ref"/>).</Item>
      <Item><C>"Grlex"</C> Graded lexicographic ordering, the equivalent of
        <Ref Func="MonomialGrlexOrdering" BookName="ref"/>.</Item>
      <Item><C>"Grevlex"</C> Graded reverse lexicographic ordering, the 
        equivalent of <Ref Func="MonomialGrevlexOrdering" 
        BookName="ref"/>.</Item>
    </List>
  </Subsection>
  </Section>
  
  <Section>
    <Heading>Construction functions</Heading>
    <#Include Label="HAPRingToSubringHomomorphism_DTmanRingHomomorphism_Con">
    <#Include Label="HAPSubringToRingHomomorphism_DTmanRingHomomorphism_Con">
    <#Include Label="HAPRingHomomorphismByIndeterminateMap_DTmanRingHomomorphism_Con">
    <#Include Label="HAPRingReductionHomomorphism_DTmanRingHomomorphism_Con">
    <#Include Label="PartialCompositionRingHomomorphism_DTmanRingHomomorphism_Con">
    <#Include Label="HAPZeroRingHomomorphism_DTmanRingHomomorphism_Con">
    <#Include Label="InverseRingHomomorphism_DTmanRingHomomorphism_Con">
    <#Include Label="CompositionRingHomomorphism_DTmanRingHomomorphism_Con">
  </Section>

  <Section>
    <Heading>Data access functions</Heading>
    <#Include Label="SourceGenerators_DTmanRingHomomorphism_Dat">
    <#Include Label="SourceRelations_DTmanRingHomomorphism_Dat">
    <#Include Label="SourcePolynomialRing_DTmanRingHomomorphism_Dat">
    <#Include Label="ImageGenerators_DTmanRingHomomorphism_Dat">
    <#Include Label="ImageRelations_DTmanRingHomomorphism_Dat">
    <#Include Label="ImagePolynomialRing_DTmanRingHomomorphism_Dat">
  
  </Section>

  <Section>
    <Heading>General functions</Heading>
    <#Include Label="ImageOfRingHomomorphism_DTmanRingHomomorphism_Gen">
    <#Include Label="PreimageOfRingHomomorphism_DTmanRingHomomorphism_Gen">
  
  </Section>

  <Section Label="RingHomomorphismExample">
    <Heading>Example: Constructing and using a <K>HAPRingHomomorphism</K></Heading>
    
    As an initial example, we shall construct a ring homomorphism 
    <M>\phi: k[x_1, x_2] \to k[x_3, x_4]</M> (i.e. ideal)
    with the mapping <M>x_1 \mapsto x_3</M> and <M>x_2 \mapsto x_3 + x_4</M>. 
    In all these examples, we shall take <M>k</M> to be the field of two 
    elements, GF(2). We demonstrate that this is an isomorphism by mapping a 
    polynomial from the source ring to the target and back again.
<!--
gap> R := PolynomialRing(GF(2), 2);;
gap> S := PolynomialRing(GF(2), 2, IndeterminatesOfPolynomialRing(R));;
gap> phi := HAPRingToSubringHomomorphism(R, [], [S.1, S.1+S.2]);
gap> p := ImageOfRingHomomorphism(phi, R.1^3+R.1*R.2+R.2);
gap> PreimageOfRingHomomorphism(phi, p);
-->
<Example><![CDATA[
gap> R := PolynomialRing(GF(2), 2);;
gap> S := PolynomialRing(GF(2), 2, IndeterminatesOfPolynomialRing(R));;
gap> phi := HAPRingToSubringHomomorphism(R, [], [S.1, S.1+S.2]);
<Ring homomorphism>
gap> p := ImageOfRingHomomorphism(phi, R.1^3+R.1*R.2+R.2);
x_3^3+x_3^2+x_3*x_4+x_3+x_4
gap> PreimageOfRingHomomorphism(phi, p);
x_1^3+x_1*x_2+x_2
]]></Example>
  <P/>
  Some ring presentations are not in minimal form: there is an isomorphic 
  ring in fewer indeterminates. The <Ref Func="HAPRingReductionHomomorphism"
    Label="for ring presentation"/> function can find and return an isomorphism
  that maps to this reduced ring. For example, the ring 
  <M>k[x_1, x_2, x_3]/(x_1^2 + x_2^3, x_2^2 + x_3)</M> has an 
  isomorphic presentation in only two indeterminates, as this computation
  shows:
<!--
gap> R := PolynomialRing(GF(2), 3);;
gap> I := [R.1^2+R.2^3, R.2^2+R.3];
gap> phi := HAPRingReductionHomomorphism(R, I);
gap> ImagePolynomialRing(phi);
gap> ImageRelations(phi);
-->
<!-- This should be an Example, but the autoloaded ResClasses package modifies
     Print for PolynomialRings, so the output differs if this package is
     available -->
<Log><![CDATA[
gap> R := PolynomialRing(GF(2), 3);;
gap> I := [R.1^2+R.2^3, R.2^2+R.3];
[ x_2^3+x_1^2, x_2^2+x_3 ]
gap> phi := HAPRingReductionHomomorphism(R, I);
<Ring homomorphism>
gap> ImagePolynomialRing(phi);
GF(2)[x_4,x_5]
gap> ImageRelations(phi);
[ x_5^3+x_4^2 ]
]]></Log>
  <P/>
  The source and target of <C>HAPRingHomomorphism</C>s can be quotient rings, 
  and any relations can be specified at the source of target. When mapping from
  a subring to a full ring, the source relations do not necessarily need to be
  specified in the source ring, but could instead be given in its containing 
  ring. For example, consider the ring <M>R/I</M> where 
  <M>R = k[x_1, x_2, x_3]</M> and <M>I = x_1^3+x_3</M> and the 
  subring generated by <M>(x_1, x_2, x_3^2)</M>. If we wish to specify the 
  homomorphism <M>\phi: R/I \to S/J</M> where <M>S = k[x_4, x_5, x_6]</M>
  with the natural map from the generators of <M>R</M> to those of <M>S</M>
  then we only need specify the original ideal <M>I</M>, even though it is not 
  in the subring.   The intersection between <M>I</M> and the subring is found 
  to be <M>x_1^4+x_3^2</M>, and it is this ideal that is used in the 
  homomorphism, as this example shows:
<!--
gap> R := PolynomialRing(GF(2), 3);;
gap> I := [R.1^2+R.3];
gap> S := PolynomialRing(GF(2), 3, IndeterminatesOfPolynomialRing(R));;
gap> phi := HAPSubringToRingHomomorphism([R.1, R.2, R.3^2], I, S);
gap> Display(phi);
gap> Display(InverseRingHomomorphism(phi));
-->
<Example><![CDATA[
gap> R := PolynomialRing(GF(2), 3);;
gap> I := [R.1^2+R.3];
[ x_1^2+x_3 ]
gap> S := PolynomialRing(GF(2), 3, IndeterminatesOfPolynomialRing(R));;
gap> phi := HAPSubringToRingHomomorphism([R.1, R.2, R.3^2], I, S);
<Ring homomorphism>
gap> Display(phi);
Ring homomorphism
  x_1 -> x_4
  x_2 -> x_5
  x_3^2 -> x_6
with relations
  [ x_1^2+x_3 ]
and
  [ x_4^4+x_6 ]
gap> Display(InverseRingHomomorphism(phi));
Ring homomorphism
  x_4 -> x_1
  x_5 -> x_2
  x_6 -> x_3^2
with relations
  [ x_4^4+x_6 ]
and
  [ x_1^4+x_3^2 ]
]]></Example>
  <P/>
  Ring homomorphisms can also be composed with each other. For example, 
  we can take the <Ref Func="HAPSubringToRingHomomorphism" Label="for relations defined at image"/> 
  above and change the target indeterminates by composing this with a 
  <Ref Func="HAPRingHomomorphismByIndeterminateMap"/>:
<!--
gap> R := PolynomialRing(GF(2), 3);;
gap> I := [R.1^2+R.3];
gap> S := PolynomialRing(GF(2), 3, IndeterminatesOfPolynomialRing(R));;
gap> phi := HAPSubringToRingHomomorphism([R.1, R.2, R.3^2], I, S);
gap> #
gap> T := PolynomialRing(GF(2), 3, [R.1, R.2, R.3, S.1, S.2, S.3]);;
gap> phi2 := HAPRingHomomorphismByIndeterminateMap(
  ImagePolynomialRing(phi), ImageRelations(phi), T);
gap> Display(CompositionRingHomomorphism(phi, phi2));
-->
<Example><![CDATA[
gap> R := PolynomialRing(GF(2), 3);;
gap> I := [R.1^2+R.3];
[ x_1^2+x_3 ]
gap> S := PolynomialRing(GF(2), 3, IndeterminatesOfPolynomialRing(R));;
gap> phi := HAPSubringToRingHomomorphism([R.1, R.2, R.3^2], I, S);
<Ring homomorphism>
gap> #
gap> T := PolynomialRing(GF(2), 3, [R.1, R.2, R.3, S.1, S.2, S.3]);;
gap> phi2 := HAPRingHomomorphismByIndeterminateMap(
>   ImagePolynomialRing(phi), ImageRelations(phi), T);
<Ring homomorphism>
gap> Display(CompositionRingHomomorphism(phi, phi2));
Ring homomorphism
  x_1 -> x_7
  x_2 -> x_8
  x_3^2 -> x_9
with relations
  [ x_1^2+x_3 ]
and
  [ x_7^4+x_9 ]
]]></Example>
  </Section>

</Chapter>