Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 1907

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

  
  7 Semigroup Homomorphisms
  
  
  7.1 Introduction
  
  In   this   chapter   we  give  instructions  on  how  to  create  semigroup
  homomorphisms using MONOID in several different ways.
  
  In   Section  7.2,  we  give  functions  for  creating  arbitrary  semigroup
  homomorphism  specified  by  a  function  on the elements, the images of the
  generators,  or  the  images  of all the semigroup elements. These functions
  were  written  to support the functions for computing the automorphism group
  of an arbitrary transformation semigroup and to specify isomorphisms between
  different  classes  of  semigroup, such as finitely presented semigroups and
  transformation semigroups.
  
  In  Section  7.3, we show how to specify and compute the inner automorphisms
  of  a  transformation  semigroup. The functions that can be used to find the
  entire automorphism group of an arbitrary transformation semigroup are given
  in  Section  7.4. The AutomorphismGroup (7.4-1) has an interactive mode that
  allows  the  user  to decide how the computation should proceed. This can be
  invoked  by  using  the  command  SetInfoLevel(InfoAutos,  4); see InfoAutos
  (7.1-1).
  
  In  Section  7.5,  commands  for  creating  automorphisms  and  finding  all
  automorphisms  of  Rees  matrix  semigroups and Rees 0-matrix semigroups are
  given.
  
  In  Section  7.6, functions for specifying the automorphisms of a zero group
  are given.
  
  In  the  final  section  (7.7),  functions  for finding isomorphisms between
  various kinds of semigroups are given.
  
  The methods behind the commands in this chapter are taken from [ABM07].
  
  Please  note:  the  following  functions  can only be used fully if GRAPE is
  fully installed (and loaded):
  
  --    AutomorphismGroup      (7.4-1)      with      argument      satisfying
        IsTransformationSemigroup  (Reference:  IsTransformationSemigroup)  or
        IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup)
  
  --    RightTransStabAutoGroup     (7.5-9)     with    argument    satisfying
        IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup)
  
  --    RZMSGraph (7.5-8)
  
  --    RZMSInducedFunction (7.5-6)
  
  --    RZMStoRZMSInducedFunction (7.5-7)
  
  --    IsomorphismSemigroups   (7.7-5)   with   both   arguments   satisfying
        IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup)
  
  Please see Chapter 1 for further details on how to obtain GRAPE.
  
  7.1-1 InfoAutos
  
  > InfoAutos_______________________________________________________info class
  
  This  is  the InfoClass for the functions in this chapter. Setting the value
  of  InfoAutos  to  1,  2, 3, or 4 using the command SetInfoLevel (Reference:
  SetInfoLevel)  will  give  different levels of information about what GAP is
  doing  during a computation. In particular, if the level of InfoAutos is set
  to 4, then AutomorphismGroup (7.4-1) runs in interactive mode.
  
  
  7.2 Creating Homomorphisms
  
  The  principal  functions for creating arbitrary semigroup homomorphisms are
  the following three.
  
  
  7.2-1 SemigroupHomomorphismByFunction
  
  > SemigroupHomomorphismByFunction( S, T, func ) ___________________operation
  > SemigroupHomomorphismByFunctionNC( S, T, func ) _________________operation
  
  returns      a      semigroup      homomorphism      with     representation
  IsSemigroupHomomorphismByFunctionRep from the semigroup S to the semigroup T
  defined by the function func.
  
  SemigroupHomomorphismByFunction  will  find  an  isomorphism  from  S  to  a
  finitely presented semigroup or monoid (using IsomorphismFpSemigroup (7.7-3)
  or IsomorphismFpMonoid (7.7-4)) and then check that the list of values under
  func of the generators of S satisfy the relations of this presentation.
  
  SemigroupHomomorphismByFunctionNC   does  not  check  that  func  defines  a
  homomorphism  and,  in  this  case  S  and  T  can be semigroups, D-classes,
  H-classes or any combination of these.
  
  ---------------------------  Example  ----------------------------
      gap> gens:=[ Transformation( [ 1, 4, 3, 5, 2 ] ), 
      > Transformation( [ 2, 3, 1, 1, 2 ] ) ];;
      gap> S:=Semigroup(gens);;
      gap> gens:=[ Transformation( [ 1, 5, 1, 2, 1 ] ), 
      > Transformation( [ 5, 1, 4, 3, 2 ] ) ];;
      gap> T:=Semigroup(gens);;
      gap> idem:=Random(Idempotents(T));;
      gap> hom:=SemigroupHomomorphismByFunction(S, T, x-> idem);
      SemigroupHomomorphism ( <semigroup with 2 generators>-><semigroup with 
      2 generators>)
      gap> hom:=SemigroupHomomorphismByFunctionNC(S, T, x-> idem);
      SemigroupHomomorphism ( <semigroup with 2 generators>-><semigroup with 
      2 generators>)
  ------------------------------------------------------------------
  
  
  7.2-2 SemigroupHomomorphismByImagesOfGens
  
  > SemigroupHomomorphismByImagesOfGens( S, T, list ) _______________operation
  > SemigroupHomomorphismByImagesOfGensNC( S, T, list ) _____________operation
  
  returns      a      semigroup      homomorphism      with     representation
  IsSemigroupHomomorphismByImagesOfGensRep  from S to T where the image of the
  ith generator of S is the ith position in list.
  
  SemigroupHomomorphismByImagesOfGens  will  find  an  isomorphism from S to a
  finitely presented semigroup or monoid (using IsomorphismFpSemigroup (7.7-3)
  or  IsomorphismFpMonoid  (7.7-4))  and  then  check  that list satisfies the
  relations of this presentation.
  
  SemigroupHomomorphismByImagesOfGensNC  does  not  check  that list induces a
  homomorphism.
  
  ---------------------------  Example  ----------------------------
      gap> gens:=[ Transformation( [ 1, 4, 3, 5, 2 ] ), 
      > Transformation( [ 2, 3, 1, 1, 2 ] ) ];;
      gap> S:=Semigroup(gens);;
      gap> gens:=[ Transformation( [ 1, 5, 1, 2, 1 ] ), 
      > Transformation( [ 5, 1, 4, 3, 2 ] ) ];;
      gap> T:=Semigroup(gens);;
      gap> SemigroupHomomorphismByImagesOfGens(S, T, GeneratorsOfSemigroup(T));
      fail
      gap> SemigroupHomomorphismByImagesOfGens(S, S, GeneratorsOfSemigroup(S));
      SemigroupHomomorphismByImagesOfGens ( <trans. semigroup of size 161 with 
      2 generators>-><trans. semigroup of size 161 with 2 generators>)
  ------------------------------------------------------------------
  
  
  7.2-3 SemigroupHomomorphismByImages
  
  > SemigroupHomomorphismByImages( S, T, list ) _____________________operation
  > SemigroupHomomorphismByImagesNC( S, T, list ) ___________________operation
  
  returns      a      semigroup      homomorphism      with     representation
  IsSemigroupHomomorphismByImagesRep  from  S  to T where the image of the ith
  element of S is the ith position in list.
  
  SemigroupHomomorphismByImages  will find an isomorphism from S to a finitely
  presented  semigroup  or  monoid  (using  IsomorphismFpSemigroup  (7.7-3) or
  IsomorphismFpMonoid   (7.7-4))  and  then  check  that  list  satisfies  the
  relations of this presentation.
  
  SemigroupHomomorphismByImagesNC   does   not   check  that  list  induces  a
  homomorphism.
  
  ---------------------------  Example  ----------------------------
      gap> gens:=[ Transformation( [ 2, 3, 4, 2, 4 ] ),
      > Transformation( [ 3, 4, 2, 1, 4 ] ) ];;
      gap> S:=Semigroup(gens);;
      gap> gens:=[ Transformation( [ 2, 4, 4, 1, 2 ] ),
      > Transformation( [ 5, 1, 1, 5, 1 ] ) ];;
      gap> T:=Semigroup(gens);;
      gap> idem:=Transformation( [ 5, 5, 5, 5, 5 ] );;
      gap> list:=List([1..Size(S)], x-> idem);;
      gap> hom:=SemigroupHomomorphismByImages(S, T, list);
      SemigroupHomomorphismByImagesOfGens ( <trans. semigroup of size 164 with 
      2 generators>-><trans. semigroup with 2 generators>)
      gap> SemigroupHomomorphismByImagesNC(S, T, list);
      SemigroupHomomorphismByImages ( <trans. semigroup of size 164 with 
      2 generators>-><trans. semigroup with 2 generators>)
  ------------------------------------------------------------------
  
  
  7.3 Inner Automorphisms
  
  7.3-1 InnerAutomorphismOfSemigroup
  
  > InnerAutomorphismOfSemigroup( S, perm ) _________________________operation
  > InnerAutomorphismOfSemigroupNC( S, perm ) _______________________operation
  
  returns  the  inner  automorphism of the transformation semigroup S given by
  the permutation perm. The degree of perm should be at most the degree of S.
  
  The  notion  of inner automorphisms of semigroups differs from the notion of
  the  same name for groups. Indeed, if S is a semigroup of transformations of
  degree n, then g in the symmetric group S_n induces an inner automorphism of
  S if the mapping that takes s to g^-1sg for all s in S is an automorphism of
  S.
  
  InnerAutomorphismOfSemigroup  checks  that the mapping induced by perm is an
  automorphism and InnerAutomorphismOfSemigroupNC only creates the appropriate
  object  without  performing a check that the permutation actually induces an
  automorphism.
  
  ---------------------------  Example  ----------------------------
      gap> gens:=[ Transformation( [ 6, 2, 7, 5, 3, 5, 4 ] ), 
      > Transformation( [ 7, 7, 5, 7, 2, 4, 3 ] ) ];;
      gap> S:=Monoid(gens);;
      gap> InnerAutomorphismOfSemigroup(S, (1,2,3,4,5));  
      fail
      gap> InnerAutomorphismOfSemigroupNC(S, (1,2,3,4,5));
      ^(1,2,3,4,5)
      gap> InnerAutomorphismOfSemigroup(S, ());
      ^()
  ------------------------------------------------------------------
  
  7.3-2 ConjugatorOfInnerAutomorphismOfSemigroup
  
  > ConjugatorOfInnerAutomorphismOfSemigroup( f ) ___________________attribute
  
  returns the permutation perm used to construct the inner automorphism f of a
  semigroup; see InnerAutomorphismOfSemigroup (7.3-1) for further details.
  
  ---------------------------  Example  ----------------------------
      gap> S:=RandomSemigroup(3,8);;
      gap> f:=InnerAutomorphismOfSemigroupNC(S, (1,2)(3,4));
      ^(1,2)(3,4)
      gap> ConjugatorOfInnerAutomorphismOfSemigroup(f);
      (1,2)(3,4)
  ------------------------------------------------------------------
  
  7.3-3 IsInnerAutomorphismOfSemigroup
  
  > IsInnerAutomorphismOfSemigroup( f ) ______________________________property
  
  returns  true  if  the  general  mapping  f  is  an  inner automorphism of a
  semigroup; see InnerAutomorphismOfSemigroup (7.3-1) for further details.
  
  ---------------------------  Example  ----------------------------
      gap> S:=RandomSemigroup(2,9);;
      gap> f:=InnerAutomorphismOfSemigroupNC(S, (1,2)(3,4));
      ^(1,2)(3,4)
      gap> IsInnerAutomorphismOfSemigroup(f);
      true
  ------------------------------------------------------------------
  
  7.3-4 InnerAutomorphismsOfSemigroup
  
  > InnerAutomorphismsOfSemigroup( S ) ______________________________attribute
  
  InnerAutomorphismsOfSemigroup  returns  the  group of inner automorphisms of
  the transformation semigroup S.
  
  The      same      result      can      be      obtained     by     applying
  InnerAutomorphismsAutomorphismGroup     (7.3-6)    to    the    result    of
  AutomorphismGroup  (7.4-1)  of S. It is possible that the inner automorphism
  of  S have been calculated at the same time as the entire automorphism group
  of S but it might not be. If the degree of S is high, then this function may
  take a long time to return a value.
  
  The  notion  of inner automorphisms of semigroups differs from the notion of
  the  same name for groups. Indeed, if S is a semigroup of transformations of
  degree n, then g in the symmetric group S_n induces an inner automorphism of
  S if the mapping that takes s to g^-1sg for all s in S is an automorphism of
  S.
  
  ---------------------------  Example  ----------------------------
    gap> x:=Transformation([2,3,4,5,6,7,8,9,1]);;
    gap> y:=Transformation([4,2,3,4,5,6,7,8,9]);;
    gap> S:=Semigroup(x,y);;
    gap> G:=InnerAutomorphismsOfSemigroup(S);
    <group of size 54 with 2 generators>
    	
  ------------------------------------------------------------------
  
  7.3-5 InnerAutomorphismsOfSemigroupInGroup
  
  > InnerAutomorphismsOfSemigroupInGroup( S, G[, bval] ) ____________operation
  
  InnerAutomorphismsOfSemigroupInGroup    returns    the    group   of   inner
  automorphisms  of  the  transformation  semigroup  S that also belong to the
  group  G.  The  default  setting  is  that  the inner automorphisms of S are
  calculated first, then filtered to see which elements also belong to G.
  
  If  the  optional  argument  bval is present and true, then the filtering is
  done  as  the  inner automorphisms are found rather than after they have all
  been    found.    Otherwise,    then    this    is   equivalent   to   doing
  InnerAutomorphismsOfSemigroupInGroup(S, G).
  
  If InfoAutos (7.1-1) is set to level 4, then a prompt will appear during the
  procedure  to let you decide when the filtering should be done. In this case
  the value of bval is irrelevant.
  
  ---------------------------  Example  ----------------------------
    gap> gens:=[ Transformation( [1,8,11,2,5,16,13,14,3,6,15,10,7,4,9,12 ] ), 
    >   Transformation( [1,16,9,6,5,8,13,12,15,2,3,4,7,10,11,14] ), 
    >   Transformation( [1,3,7,9,1,15,5,11,13,11,13,3,5,15,7,9 ] ) ];;
    gap> S:=Semigroup(gens);;
    gap> InnerAutomorphismsOfSemigroup(S);
    <group of size 16 with 3 generators>
    gap> G:=Group(SemigroupHomomorphismByImagesOfGensNC(S, S, gens));
    <group with 1 generators>
    gap> InnerAutomorphismsOfSemigroupInGroup(S, G);
    <group of size 1 with 1 generators>
    gap> InnerAutomorphismsOfSemigroupInGroup(S, G, true);
    <group of size 1 with 1 generators>
    gap> InnerAutomorphismsOfSemigroupInGroup(S, G, false);
    <group of size 1 with 1 generators>
    	
  ------------------------------------------------------------------
  
  7.3-6 InnerAutomorphismsAutomorphismGroup
  
  > InnerAutomorphismsAutomorphismGroup( autgroup ) _________________attribute
  
  If  autgroup  satisfies  IsAutomorphismGroupOfSemigroup  (7.4-3)  then, this
  attribute  stores  the  subgroup  of  inner  automorphisms  of  the original
  semigroup.
  
  It is possible that the inner automorphisms of autgroup have been calculated
  at  the  same  time as autgroup was calculated but they might not be. If the
  degree  of  underlying semigroup is high, then this function may take a long
  time to return a value.
  
  The  notion  of inner automorphisms of semigroups differs from the notion of
  the  same name for groups. Indeed, if S is a semigroup of transformations of
  degree n, then g in the symmetric group S_n induces an inner automorphism of
  S if the mapping that takes s to g^-1sg for all s in S is an automorphism of
  S.
  
  If   autgroup   satisfies   IsAutomorphismGroupOfZeroGroup   (7.4-5),   then
  InnerAutomorphismsAutomorphismGroup    returns   the   subgroup   of   inner
  automorphisms  inside  the automorphism group of the zero group by computing
  the  inner automorphisms of the underlying group. Note that in this case the
  notion  of  inner  automorphisms  corresponds to that of the group theoretic
  notion.
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation([3,3,2,6,2,4,4,6]);;
    gap> g2:=Transformation([5,1,7,8,7,5,8,1]);;
    gap> m6:=Semigroup(g1,g2);;
    gap> A:=AutomorphismGroup(m6);
    <group of size 12 with 2 generators>
    gap> InnerAutomorphismsAutomorphismGroup(A);
    <group of size 12 with 2 generators> 
    gap> last=InnerAutomorphismsOfSemigroup(m6); 
    	
  ------------------------------------------------------------------
  
  7.3-7 IsInnerAutomorphismsOfSemigroup
  
  > IsInnerAutomorphismsOfSemigroup( G ) _____________________________property
  
  returns  true  if  G  is  the  inner  automorphism group of a transformation
  semigroup.
  
  The  notion  of inner automorphisms of semigroups differs from the notion of
  the  same name for groups. Indeed, if S is a semigroup of transformations of
  degree n, then g in the symmetric group S_n induces an inner automorphism of
  S if the mapping that takes s to g^-1sg for all s in S is an automorphism of
  S.
  
  Note  that  this  property  is set to true when the computation of the inner
  automorphisms  is  performed.  Otherwise,  there is no method to check if an
  arbitrary group satisfies this property.
  
  ---------------------------  Example  ----------------------------
    gap> S:=RandomSemigroup(5,5);
    <semigroup with 5 generators>
    gap> I:=InnerAutomorphismsOfSemigroup(S);;
    gap> IsInnerAutomorphismsOfSemigroup(I);
    true
    	
  ------------------------------------------------------------------
  
  7.3-8 IsInnerAutomorphismsOfZeroGroup
  
  > IsInnerAutomorphismsOfZeroGroup( G ) _____________________________property
  
  returns  true  if  G  is  the inner automorphism group of a zero group. This
  property is set to true when the computation of the inner automorphism group
  of the zero group is performed. Otherwise, there is no method to check if an
  arbitrary group satisfies this property.
  
  Every  inner  automorphism  of a zero group is just an inner automorphism of
  the  underlying  group that fixes the zero element. So, this notion of inner
  automorphism corresponds to the notion of inner automorphisms of a group.
  
  ---------------------------  Example  ----------------------------
    gap> zg:=ZeroGroup(CyclicGroup(70));
    <zero group with 4 generators>
    gap> I:=InnerAutomorphismsAutomorphismGroup(AutomorphismGroup(zg));
    <group of size 1 with 1 generators>
    gap> IsInnerAutomorphismsOfZeroGroup(I);
    true
    	
  ------------------------------------------------------------------
  
  
  7.4 Automorphism Groups
  
  7.4-1 AutomorphismGroup
  
  > AutomorphismGroup( S ) __________________________________________attribute
  
  AutomorphismGroup  returns  the group of automorphisms of the transformation
  semigroup,  zero  group,  zero  semigroup,  Rees  matrix  semigroup, or Rees
  0-matrix   semigroup  S;  that  is,  semigroups  satisfying  the  properties
  IsTransformationSemigroup       (Reference:      IsTransformationSemigroup),
  IsZeroGroup   (5.2-15),   IsZeroSemigroup   (5.2-14),  IsReesMatrixSemigroup
  (Reference: IsReesMatrixSemigroup), or IsReesZeroMatrixSemigroup (Reference:
  IsReesZeroMatrixSemigroup).
  
  If  S  is  a  transformation  semigroup, then AutomorphismGroup computes the
  automorphism group of S using the algorithm described in [ABM07].
  
  If   S   is   a  (completely)  simple  transformation  semigroup,  then  the
  automorphism  group  is  computed  by  passing  to an isomorphic Rees matrix
  semigroup.  If  S  is a transformation group, then the automorphism group is
  computed  by  passing to an isomorphic permutation group. If S has order <10
  and    knows    its    Cayley    table    (MultiplicationTable   (Reference:
  MultiplicationTable)),  then the automorphism group is calculated by finding
  the  setwise stabilizer of the Cayley table in the symmetric group of degree
  |S| under the action on the Cayley table.
  
  If S is a zero group, then AutomorphismGroup computes the automorphism group
  of  the  underlying  group. Obviously, every automorphism of a zero group is
  the extension of an automorphism of the underlying group that fixes the zero
  element.
  
  If  S  is a zero semigroup, then every permutation of the elements of S that
  fixes  the zero element is an automorphism. Thus the automorphism group of a
  zero  semigroup  of  order  n  is  isomorphic  to the symmetric group on n-1
  elements.
  
  If  S  is  a  Rees  matrix  semigroup or a Rees 0-matrix semigroup, then the
  automorphism  group  of  S  is  calculated  using the algorithm described in
  [ABM07,  Section 2]. In this case, the returned group has as many generators
  as elements. This may be changed in the future.
  
  If  InfoAutos (7.1-1) is set to level 4, then prompts will appear during the
  procedure to allow you interactive control over the computation.
  
  Please note: if grape is not loaded, then this function will not work when S
  satisfies  IsTransformationSemigroup  (Reference: IsTransformationSemigroup)
  or IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup).
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation([5,4,4,2,1]);;
    gap> g2:=Transformation([2,5,5,4,1]);;
    gap> m2:=Monoid(g1,g2);;
    gap> IsTransformationSemigroup(m2);
    true
    gap> AutomorphismGroup(m2);
    <group of size 24 with 5 generators>
    gap> IsAutomorphismGroupOfSemigroup(last);
    true
    gap> zg:=ZeroGroup(CyclicGroup(70));
    <zero group with 4 generators>
    gap> IsZeroGroup(zg);
    true
    gap> AutomorphismGroup(zg);
    <group with 3 generators>
    gap> IsAutomorphismGroupOfZeroGroup(last);
    true
    gap> InnerAutomorphismsOfSemigroup(zg);
    <group of size 1 with 1 generators>
    gap> InnerAutomorphismsAutomorphismGroup(AutomorphismGroup(zg));
    <group of size 1 with 1 generators>
    gap> last2=InnerAutomorphismsAutomorphismGroup(AutomorphismGroup(zg));
    true
    gap> S:=ZeroSemigroup(10);
    <zero semigroup with 10 elements>
    gap> Size(S);
    10
    gap> Elements(S);
    [ 0, z1, z2, z3, z4, z5, z6, z7, z8, z9 ]
    gap> A:=AutomorphismGroup(S);
    <group with 2 generators>
    gap> IsAutomorphismGroupOfZeroSemigroup(A);
    true
    gap> Factorial(9)=Size(A);
    true
    gap> G:=Group([ (2,5)(3,4) ]);;
    gap> mat:=[ [ (), (), (), (), () ], 
    >   [ (), (), (2,5)(3,4), (2,5)(3,4), () ], 
    >   [ (), (), (), (2,5)(3,4), (2,5)(3,4) ], 
    >   [ (), (2,5)(3,4), (), (2,5)(3,4), () ], 
    >   [ (), (2,5)(3,4), (), (2,5)(3,4), () ] ];;
    gap> rms:=ReesMatrixSemigroup(G, mat);
    Rees Matrix Semigroup over Group([ (2,5)(3,4) ])
    gap> A:=AutomorphismGroup(rms);
    <group of size 12 with 12 generators>
    gap> IsAutomorphismGroupOfRMS(A);
    true
    gap> G:=ZeroGroup(Group([ (1,3)(2,5), (1,3,2,5) ]));;
    gap> elts:=Elements(G);;
    gap> mat:=[ [ elts[7], elts[1], elts[9], elts[1], elts[1] ], 
    >   [ elts[1], elts[1], elts[1], elts[9], elts[1] ], 
    >   [ elts[9], elts[1], elts[1], elts[4], elts[9] ], 
    >   [ elts[1], elts[1], elts[1], elts[1], elts[1] ], 
    >   [ elts[1], elts[5], elts[1], elts[1], elts[1] ] ];;
    gap> rzms:=ReesZeroMatrixSemigroup(G, mat);;
    gap> AutomorphismGroup(rzms);
    gap> IsAutomorphismGroupOfRZMS(A);
    true
    <group of size 512 with 512 generators>
    	
  ------------------------------------------------------------------
  
  7.4-2 AutomorphismsSemigroupInGroup
  
  > AutomorphismsSemigroupInGroup( S, G[, bvals] ) __________________operation
  
  AutomorphismsSemigroupInGroup  returns  the  group  of  automorphisms of the
  transformation  semigroup S that also belong to the group G. If the value of
  G  is  fail,  then  AutomorphismsSemigroupInGroup  returns the same value as
  AutomorphismGroup  (7.4-1). The default setting is that the automorphisms of
  S  are  calculated first, then filtered to see which elements also belong to
  G.
  
  The optional argument bvals is a list of 5 Boolean variables that correspond
  to the following options:
  
  --    if bvals[1] is true, then GAP will run a cheap check to see if all the
        automorphisms  are inner. Note that this can return false when all the
        automorphisms  are  inner, that is the condition is sufficient but not
        necessary. The default setting is false.
  
  --    if  bvals[2]  is  true,  then  GAP  will  try  to  compute  the  inner
        automorphisms of S before computing the entire automorphism group. For
        semigroups  of  large  degree  this  may  not be sensible. The default
        setting is false.
  
  --    if  bvals[3]  is  true,  then  GAP  will  test  elements  in the inner
        automorphism  search  space  to  see  if  they  are  in G as the inner
        automorphisms  are  found  rather than after they have all been found.
        The default setting is false.
  
  --    if  bvals[4]  is  true, then GAP will test elements in the outer (i.e.
        not  inner)  automorphism search space to see if they are in G as they
        are  found  rather  than  after  they have all been found. The default
        setting is false.
  
  --    if  bvals[5] is true, then GAP will keep track of non-automorphisms in
        the search for outer automorphisms. The default setting is false.
  
  Please note: if grape is not loaded, then this function will not work when S
  satisfies  IsTransformationSemigroup  (Reference: IsTransformationSemigroup)
  or IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup).
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation([5,4,4,2,1]);;
    gap> g2:=Transformation([2,5,5,4,1]);;
    gap> m2:=Monoid(g1,g2);;
    gap> A:=AutomorphismsSemigroupInGroup(m2, fail, 
    > [false, true, true, false, true]);
    <group of size 24 with 3 generators>
    gap> g1:=Transformation([3,3,2,6,2,4,4,6,3,4,6]);;
    gap> g2:=Transformation([4,4,6,1,3,3,3,3,11,11,11]);;
    gap> m7:=Monoid(g1,g2);;
    gap> A:=AutomorphismsSemigroupInGroup(m7, fail, 
    > [false, true, false, false, true]);
    <group of size 2 with 2 generators>
    gap> imgs:=[ [ Transformation( [ 1, 1, 5, 4, 3, 6, 7, 8, 9, 10, 11, 12 ] ), 
    >       Transformation( [ 1, 1, 5, 7, 4, 3, 6, 8, 9, 10, 11, 12 ] ), 
    >       Transformation( [ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 8 ] ) ], 
    >   [ Transformation( [ 1, 1, 5, 4, 3, 6, 7, 8, 9, 10, 11, 12 ] ), 
    >       Transformation( [ 1, 1, 5, 3, 7, 4, 6, 8, 9, 10, 11, 12 ] ), 
    >       Transformation( [ 1, 2, 3, 4, 5, 6, 7, 11, 12, 8, 9, 10 ] ) ] ];;
    gap> gens:=List(imgs, x-> SemigroupHomomorphismByImagesOfGensNC(S, S, x));;
    gap> G:=Group(gens);
    <group with 2 generators>
    gap> A:=AutomorphismsSemigroupInGroup(S, G, 
    > [false, false, false, true, false]);
    <group of size 48 with 4 generators>
    gap> Size(G);
    48
    gap> A:=AutomorphismsSemigroupInGroup(S, G);
    <group of size 48 with 4 generators>
    gap> gens:=[ Transformation( [ 1, 1, 4, 3, 5, 6, 7, 8, 9, 10, 11, 12 ] ), 
    >   Transformation( [ 1, 1, 4, 5, 6, 7, 3, 8, 9, 10, 11, 12 ] ), 
    >   Transformation( [ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 8 ] ) ];;
    gap> S:=Semigroup(gens);;
    gap> A:=AutomorphismsSemigroupInGroup(S, G);
    <group of size 48 with 4 generators>
    gap> HasAutomorphismGroup(S);
    true
    gap> AutomorphismGroup(S);
    <group of size 480 with 7 generators>
    	
  ------------------------------------------------------------------
  
  7.4-3 IsAutomorphismGroupOfSemigroup
  
  > IsAutomorphismGroupOfSemigroup( G ) ______________________________property
  
  returns  true  if G is the automorphism group of a semigroup. Note that this
  property  is  set  to true when the computation of the automorphism group is
  performed.  Otherwise,  there  is  no  method to check if an arbitrary group
  satisfies this property; see AutomorphismGroup (7.4-1) for an example of the
  usage of this command.
  
  7.4-4 IsAutomorphismGroupOfSimpleSemigp
  
  > IsAutomorphismGroupOfSimpleSemigp( G ) ___________________________property
  
  returns  true  if  G  is  the  automorphism group of a simple transformation
  semigroup.  This  property  is  set  to  true  when  the  computation of the
  automorphism  group  of  the  simple  transformation semigroup is performed.
  Otherwise,  there is no method to check if an arbitrary group satisfies this
  property;  see AutomorphismGroup (7.4-1) for an example of the usage of this
  command.
  
  7.4-5 IsAutomorphismGroupOfZeroGroup
  
  > IsAutomorphismGroupOfZeroGroup( G ) ______________________________property
  
  returns  true  if G is the automorphism group of a zero group. This property
  is  set  to  true when the computation of the automorphism group of the zero
  group  is  performed. Otherwise, there is no method to check if an arbitrary
  group  satisfies this property; see AutomorphismGroup (7.4-1) for an example
  of the usage of this command.
  
  Every automorphism of a zero group is just an automorphism of the underlying
  group that fixes the zero element.
  
  7.4-6 IsAutomorphismGroupOfZeroSemigroup
  
  > IsAutomorphismGroupOfZeroSemigroup( G ) __________________________property
  
  returns  true  if  G  is  the  automorphism  group of a zero semigroup. This
  property  is  set  to true when the computation of the automorphism group of
  the  zero  semigroup is performed. Otherwise, there is no method to check if
  an  arbitrary  group  satisfies this property; see AutomorphismGroup (7.4-1)
  for an example of the usage of this command.
  
  Every  permutation  of  a  zero  semigroup that fixes the zero element is an
  automorphism.  Thus the automorphism group of a zero semigroup of order n is
  isomorphic to the symmetric group on n-1 elements.
  
  7.4-7 IsAutomorphismGroupOfRMS
  
  > IsAutomorphismGroupOfRMS( G ) ____________________________________property
  
  returns true if G is the automorphism group of a Rees matrix semigroup; that
  is,  a  semigroup  created using the command ReesMatrixSemigroup (Reference:
  ReesMatrixSemigroup)  and/or  satisfying  IsReesMatrixSemigroup  (Reference:
  IsReesMatrixSemigroup).
  
  Note  that  this  property  is  set  to  true  when  the  computation of the
  automorphism  group  is performed. Otherwise, there is no method to check if
  an  arbitrary  group  satisfies this property; see AutomorphismGroup (7.4-1)
  for an example of the usage of this command.
  
  7.4-8 IsAutomorphismGroupOfRZMS
  
  > IsAutomorphismGroupOfRZMS( G ) ___________________________________property
  
  returns true if G is the automorphism group of a Rees matrix semigroup; that
  is,   a   semigroup   created   using  the  command  ReesZeroMatrixSemigroup
  (Reference:         ReesZeroMatrixSemigroup)        and/or        satisfying
  IsReesZeroMatrixSemigroup (Reference: IsReesZeroMatrixSemigroup).
  
  Note  that  this  property  is  set  to  true  when  the  computation of the
  automorphism  group  is performed. Otherwise, there is no method to check if
  an  arbitrary  group  satisfies this property; see AutomorphismGroup (7.4-1)
  for an example of the usage of this command.
  
  
  7.5 Rees Matrix Semigroups
  
  7.5-1 RMSIsoByTriple
  
  > RMSIsoByTriple( rms1, rms2, triple ) _____________________________function
  
  this  is  a  function  to  create  an  isomorphism  between  the Rees matrix
  semigroups  rms1  and  rms2 defined by triple. The first component of triple
  should be an isomorphism from the underlying group of rms1 to the underlying
  group  of rms2, the second component should be an isomorphism from the graph
  associated  to the matrix of rms1 to the graph associated with the matrix of
  rms2, and the third component should be a function (given as a list of image
  elements)  from  the index sets of rms1 to the underlying group of rms2; see
  [ABM07, Section 2] for further details.
  
  Note   that  this  function  only  creates  an  object  with  representation
  IsRMSIsoByTripleRep  (7.5-3) and does not check that triple actually defines
  an  isomorphism  from rms1 to rms2 or that the arguments even make sense. To
  create an isomorphism from rms1 to rms2 use IsomorphismSemigroups (7.7-5).
  
  ---------------------------  Example  ----------------------------
    gap> G:=Group((1,4,3,5,2));;
    gap> mat:=[ [ (), (), () ], [ (), (1,4,3,5,2), () ], [ (), (1,3,2,4,5), () ] ];;
    gap> rms:=ReesMatrixSemigroup(G, mat);;
    gap> l:=(4,6);;
    gap> g:=GroupHomomorphismByImages(G, G, [(1,4,3,5,2)], [(1,2,5,3,4)]);
    [ (1,4,3,5,2) ] -> [ (1,2,5,3,4) ]
    gap> map:=[(), (1,5,4,2,3), (), (), (), () ];;
    gap> RMSIsoByTriple(rms, rms, [l, g, map]);
    [ (4,6), GroupHomomorphismByImages( Group( [ (1,4,3,5,2) ] ), Group( 
      [ (1,4,3,5,2) ] ), [ (1,4,3,5,2) ], [ (1,2,5,3,4) ] ), 
      [ (), (1,5,4,2,3), (), (), (), () ] ]
    gap> IsRMSIsoByTripleRep(last);
    true
    gap> #the previous actually defines an automorphism of rms
    gap> #on the other hand, the next example is nonsense but no error
    gap> #is given
    gap> RMSIsoByTriple(rms, rms, [l, g, [()]]);
    [ (4,6), GroupHomomorphismByImages( Group( [ (1,4,3,5,2) ] ), Group( 
      [ (1,4,3,5,2) ] ), [ (1,4,3,5,2) ], [ (1,2,5,3,4) ] ), [ () ] ]
  ------------------------------------------------------------------
  
  7.5-2 RZMSIsoByTriple
  
  > RZMSIsoByTriple( rzms1, rzms2, triple ) __________________________function
  
  this  is  a  function  to  create  an  isomorphism between the Rees 0-matrix
  semigroups  rzms1 and rzms2 defined by triple. The first component of triple
  should  be  an  isomorphism  from  the underlying zero group of rzms1 to the
  underlying   zero  group  of  rzms2,  the  second  component  should  be  an
  isomorphism  from  the  graph associated to the matrix of rzms1 to the graph
  associated  with  the  matrix  of rzms2, and the third component should be a
  function (given as a list of image elements) from the index sets of rzms1 to
  the  underlying  zero  group  of  rzms2;  see [ABM07, Section 2] for further
  details.
  
  Note   that  this  function  only  creates  an  object  with  representation
  IsRZMSIsoByTripleRep (7.5-4) and does not check that triple actually defines
  an isomorphism from rzms1 to rzms2 or that the arguments even make sense. To
  create an isomorphism from rzms1 to rzms2 use IsomorphismSemigroups (7.7-5).
  
  ---------------------------  Example  ----------------------------
    gap> G:=Group((1,4,3,5,2));;
    gap> ZG:=ZeroGroup(G);
    <zero group with 2 generators>
    gap> mat:=[ [ (), (), () ], [ (), (1,4,3,5,2), () ], [ (), (1,3,2,4,5), () ] ];;
    gap> mat:=List(mat, x-> List(x, ZeroGroupElt));
    [ [ (), (), () ], [ (), (1,4,3,5,2), () ], [ (), (1,3,2,4,5), () ] ]
    gap> rms:=ReesZeroMatrixSemigroup(ZG, mat);
    Rees Zero Matrix Semigroup over <zero group with 2 generators>
    gap> l:=(4,6);;
    gap> g:=GroupHomomorphismByImages(G, G, [(1,4,3,5,2)], [(1,2,5,3,4)]);
    [ (1,4,3,5,2) ] -> [ (1,2,5,3,4) ]
    gap> g:=ZeroGroupAutomorphism(ZG, g);
    <mapping: <zero group with 2 generators> -> <zero group with 2 generators> >
    gap>  map:=List([(), (1,5,4,2,3), (), (), (), () ], ZeroGroupElt);;
    gap> RZMSIsoByTriple(rms, rms, [l, g, map]);
    [ (4,6), <mapping: <zero group with 2 generators> -> <zero group with 
      2 generators> >, 
    [ ZeroGroup(()), ZeroGroup((1,5,4,2,3)), ZeroGroup(()), ZeroGroup(()), 
        ZeroGroup(()), ZeroGroup(()) ] ]
    gap> RZMSIsoByTriple(rms, rms, [l, g, [()]]);
    [ (4,6), <mapping: <zero group with 2 generators> -> <zero group with 
      2 generators> >, [ () ] ]
    gap> IsRZMSIsoByTripleRep(last);
    true    
  ------------------------------------------------------------------
  
  7.5-3 IsRMSIsoByTripleRep
  
  > IsRMSIsoByTripleRep( f ) ___________________________________Representation
  
  returns true if the object f is represented as an isomorphism of Rees matrix
  semigroups   by   a   triple;  as  explained  in  [ABM07,  Section  2];  see
  RMSIsoByTriple (7.5-1) for an example of the usage of this command.
  
  7.5-4 IsRZMSIsoByTripleRep
  
  > IsRZMSIsoByTripleRep( f ) __________________________________Representation
  
  returns true if the object f is represented as an isomorphism of Rees matrix
  semigroups   by   a   triple;  as  explained  in  [ABM07,  Section  2];  see
  RZMSIsoByTriple (7.5-2) for an example of the usage of this command.
  
  7.5-5 RMSInducedFunction
  
  > RMSInducedFunction( RMS, lambda, gamma, g ) _____________________operation
  
  lambda  is  an  automorphism  of  the  graph  associated  to the Rees matrix
  semigroup  RMS,  gamma an automorphism of the underlying group of RMS, and g
  an  element  of the underlying group of RMS. The function RMSInducedFunction
  attempts  to find the function determined by lambda and gamma from the union
  of  the  index  sets I and J to the group G of the Rees matrix semigroup RMS
  over  G,  I, and J with respect to P where the first element is given by the
  element  g. If a conflict is found, then false is returned together with the
  induced map; see [ABM07, Section 2] for further details.
  
  ---------------------------  Example  ----------------------------
    gap> G:=Group([ (1,2) ]);;
    gap> mat:=[ [ (), (), () ], [ (), (1,2), () ], [ (), (1,2), (1,2) ], 
    >    [ (), (), () ], [ (), (1,2), () ] ];;
    gap> rms:=ReesMatrixSemigroup(G, mat);;
    gap> l:=(1,2)(4,5,6);
    (1,2)(4,5,6)
    gap> gam:=One(AutomorphismGroup(G));
    IdentityMapping( Group([ (1,2) ]) )
    gap> g:=(1,2);
    gap> RMSInducedFunction(rms, l, gam, g);
    [ false, [ (1,2), (), (), (), (), (1,2), (1,2), () ] ]
    gap> RMSInducedFunction(rms, (4,7), gam, ());
    [ true, [ (), (), (), (), (), (), (), () ] ]
  ------------------------------------------------------------------
  
  7.5-6 RZMSInducedFunction
  
  > RZMSInducedFunction( RZMS, lambda, gamma, g, comp ) _____________operation
  
  lambda  is  an  automorphism  of  the graph associated to the Rees 0- matrix
  semigroup  RZMS, gamma an automorphism of the underlying zero group of RZMS,
  comp  is  a connected component of the graph associated to RZMS, and g is an
  element   of   the   underlying   zero   group   of   RZMS.   The   function
  RZMSInducedFunction  attempts  to  find  the  partial function determined by
  lambda  and  gamma from comp to the zero group G^0 of G of the Rees 0-matrix
  semigroup  RZMS  over G^0, I, and J with respect to P where the image of the
  first  element  in  comp  is given by the element g. If a conflict is found,
  then fail is returned; see [ABM07, Section 2] for further details.
  
  Please note: if grape is not loaded, then this function will not work.
  
  ---------------------------  Example  ----------------------------
    gap> zg:=ZeroGroup(Group(()));;
    gap> z:=Elements(zg)[1];
    0
    gap> x:=Elements(zg)[2];
    ()
    gap> mat:=[ [ z, z, z ], [ x, z, z ], [ x, x, z ] ];;
    gap> rzms:=ReesZeroMatrixSemigroup(zg, mat);;
    gap> RZMSInducedFunction(rzms, (), One(AutomorphismGroup(zg)), x, 
    > [1,2,5,6])
    [ (), (),,, (), () ]
    gap> RZMSInducedFunction(rzms, (), One(AutomorphismGroup(zg)), x, [3]);     
    [ ,, () ]
    gap> RZMSInducedFunction(rzms, (), One(AutomorphismGroup(zg)), x, [4]);
    [ ,,, () ]
    gap> zg:=ZeroGroup(Group([ (1,5,2,3), (1,4)(2,3) ]));;
    gap> elts:=Elements(zg);;
    gap> mat:=[ [ elts[1], elts[1], elts[11], elts[1], elts[1] ], 
    >    [ elts[1], elts[13], elts[21], elts[1], elts[1] ], 
    >    [ elts[1], elts[16], elts[1], elts[16], elts[3] ], 
    >    [ elts[10], elts[17], elts[1], elts[1], elts[1] ], 
    >    [ elts[1], elts[1], elts[1], elts[4], elts[1] ] ];
    gap> rzms:=ReesZeroMatrixSemigroup(zg, mat);                                   
    gap> RZMSInducedFunction(rzms, (), Random(AutomorphismGroup(zg)), 
    > Random(elts), [1..10])=fail;
    false
    	
  ------------------------------------------------------------------
  
  7.5-7 RZMStoRZMSInducedFunction
  
  > RZMStoRZMSInducedFunction( RZMS1, RZMS2, lambda, gamma, elts ) __operation
  
  lambda  is  an  automorphism  of  the graph associated to the Rees 0- matrix
  semigroup  RZMS1  composed  with isomorphism from that graph to the graph of
  RZMS2, gamma an automorphism of the underlying zero group of RZMS1, and elts
  is  a  list  of elements of the underlying zero group of RZMS2. The function
  RZMStoRZMSInducedFunction attempts to find the function determined by lambda
  and  gamma  from  the  union  of the index sets I and J of RZMS1 to the zero
  group G^0 of the Rees 0-matrix semigroup RZMS2 over the zero group G^0, sets
  I  and  J,  and  matrix  P  where  the image of the first element in the ith
  connected component of the associated graph of RZMS1 is given by elts[i]. If
  a  conflict  is  found,  then  false is returned; see [ABM07, Section 2] for
  further details.
  
  Please note: if grape is not loaded, then this function will not work.
  
  ---------------------------  Example  ----------------------------
    gap> gens:=[ Transformation( [ 4, 4, 8, 8, 8, 8, 4, 8 ] ), 
      Transformation( [ 8, 2, 8, 2, 5, 5, 8, 8 ] ), 
      Transformation( [ 8, 8, 3, 7, 8, 3, 7, 8 ] ), 
      Transformation( [ 8, 6, 6, 8, 6, 8, 8, 8 ] ) ];;
    gap> S:=Semigroup(gens);;
    gap> D:=GreensDClasses(S);;
    gap> rms1:=Range(IsomorphismReesMatrixSemigroupOfDClass(D[1]));
    Rees Zero Matrix Semigroup over <zero group with 2 generators>
    gap> rms2:=Range(IsomorphismReesMatrixSemigroupOfDClass(D[4]));
    Rees Zero Matrix Semigroup over <zero group with 2 generators>
    gap> gam:=One(AutomorphismGroup
    > (UnderlyingSemigroupOfReesZeroMatrixSemigroup(Group(rms1))));
    IdentityMapping( <zero group with 2 generators> )
    gap> g:=One(UnderlyingSemigroupOfReesZeroMatrixSemigroup(rms2));
    ()
    gap> RZMStoRZMSInducedFunction(rms1, rms2, (2,3)(5,6), gam, [g]);
    [ (), (), (), (), (), () ]
    	
  ------------------------------------------------------------------
  
  7.5-8 RZMSGraph
  
  > RZMSGraph( rzms ) _______________________________________________attribute
  
  if  rzms  is a Rees 0-matrix semigroup over a zero group G^0, 3 index sets I
  and  J,  and matrix P, then RZMSGraph returns the undirected bipartite graph
  with  |I|+|J|  vertices  and  edge  (i,j)  if and only if i<|I|+1, j>|I| and
  p_{j-|I|, i} is not zero.
  
  The  returned object is a simple undirected graph created in GRAPE using the
  command
  
  
       Graph(Group(()), [1..n+m], OnPoints, adj, true);
  
  
  where  adj  is  true  if  and only if i<|I|+1, j>|I| and p_{j-|I|, i} is not
  zero.
  
  Please note: if grape is not loaded, then this function will not work.
  
  ---------------------------  Example  ----------------------------
    gap> zg:=ZeroGroup(Group(()));;
    gap> z:=Elements(zg)[1];
    0
    gap> x:=Elements(zg)[2];
    ()
    gap> mat:=[ [ 0, 0, 0 ], [ (), 0, 0 ], [ (), (), 0 ] ];;
    gap> rzms:=ReesZeroMatrixSemigroup(zg, mat);;
    gap> RZMSGraph(rzms);
    rec( isGraph := true, order := 6, group := Group(()), 
      schreierVector := [ -1, -2, -3, -4, -5, -6 ], 
      adjacencies := [ [ 5, 6 ], [ 6 ], [  ], [  ], [ 1 ], [ 1, 2 ] ], 
      representatives := [ 1, 2, 3, 4, 5, 6 ], names := [ 1, 2, 3, 4, 5, 6 ] )
    gap> UndirectedEdges(last);
    [ [ 1, 5 ], [ 1, 6 ], [ 2, 6 ] ]
  ------------------------------------------------------------------
  
  7.5-9 RightTransStabAutoGroup
  
  > RightTransStabAutoGroup( S, elts, func ) ________________________operation
  
  returns  a  right transversal of the stabilizer w.r.t the action func of the
  elements  elts  in the automorphism group of the zero semigroup, Rees matrix
  semigroup,   or   Rees   0-matrix   semigroup   S.  That  is,  S  satisfying
  IsZeroSemigroup       (5.2-14),       IsReesMatrixSemigroup      (Reference:
  IsReesMatrixSemigroup),     or     IsReesZeroMatrixSemigroup     (Reference:
  IsReesZeroMatrixSemigroup).
  
  ---------------------------  Example  ----------------------------
    gap> S:=ZeroSemigroup(6);
    <zero semigroup with 6 elements>
    gap> elts:=Elements(S);
    [ 0, z1, z2, z3, z4, z5 ]
    gap> Length(RightTransStabAutoGroup(S, [elts[1]], OnSets));
    1
    gap> Length(RightTransStabAutoGroup(S, [elts[1], elts[2]], OnSets));
    5
    gap> Length(RightTransStabAutoGroup(S, [elts[1], elts[2]], OnTuples));
    5
    gap> G:=Group([ (1,2) ]);;
    gap> mat:=[ [ (), (), () ], [ (), (1,2), () ], [ (), (1,2), (1,2) ], 
    >    [ (), (), () ], [ (), (1,2), () ] ];;
    gap> rms:=ReesMatrixSemigroup(G, mat);;
    gap> Size(rms);
    30
    gap> GeneratorsOfSemigroup(rms);
    [ (1,(),2), (1,(),3), (1,(),4), (1,(),5), (2,(),1), (3,(),1), (1,(1,2),1) ]
    gap> Length(RightTransStabAutoGroup(rms, last, OnSets));
    4
    gap> Length(RightTransStabAutoGroup(rms, GeneratorsOfSemigroup(rms), 
    > OnTuples));
    8
    gap> G:=ZeroGroup(Group([ (1,3) ]));;
    gap> z:=MultiplicativeZero(G);; x:=Elements(G)[2];;
    gap> mat:=[ [ z, z, z ], [ z, z, z ], [ z, z, z ], [ z, z, z ], [ z, x, z ] ];;
    gap> rzms:=ReesZeroMatrixSemigroup(G, mat);
    gap> Size(rzms);
    31
    gap> Size(GeneratorsOfSemigroup(rzms));
    6
    gap> Length(RightTransStabAutoGroup(rzms, GeneratorsOfSemigroup(rzms), 
    > OnSets));
    512
    gap> A:=AutomorphismGroup(rzms);
    <group of size 3072 with 3072 generators>
  ------------------------------------------------------------------
  
  
  7.6 Zero Groups
  
  7.6-1 ZeroGroupAutomorphism
  
  > ZeroGroupAutomorphism( ZG, f ) ___________________________________function
  
  converts  the group automorphism f of the underlying group of the zero group
  ZG into an automorphism of the zero group ZG.
  
  ---------------------------  Example  ----------------------------
    gap> G:=Random(AllGroups(20));
    <pc group of size 20 with 3 generators>
    gap> A:=AutomorphismGroup(G);
    <group with 2 generators>
    gap> f:=Random(A);
    [ f1*f2^4*f3 ] -> [ f1*f2^2 ]
    gap> ZG:=ZeroGroup(G);
    <zero group with 4 generators>
    gap> ZeroGroupAutomorphism(ZG, f);
    <mapping: <zero group with 4 generators> -> <zero group with 4 generators> >
    gap> IsZeroGroupAutomorphismRep(last);
    true
    gap> UnderlyingGroupAutoOfZeroGroupAuto(last2)=f;
    true
    	
  ------------------------------------------------------------------
  
  7.6-2 IsZeroGroupAutomorphismRep
  
  > IsZeroGroupAutomorphismRep( f ) ____________________________Representation
  
  returns  true  if  the  object f is represented as an automorphism of a zero
  group; see ZeroGroupAutomorphism (7.6-1) for an example of the usage of this
  command.
  
  7.6-3 UnderlyingGroupAutoOfZeroGroupAuto
  
  > UnderlyingGroupAutoOfZeroGroupAuto( f ) _________________________attribute
  
  returns  the underlying group automorphism of the zero group automorphism f.
  That  is,  the  restriction  of  f  to  its  source  without  the  zero; see
  ZeroGroupAutomorphism (7.6-1) for an example of the usage of this command.
  
  
  7.7 Isomorphisms
  
  7.7-1 IsomorphismAutomorphismGroupOfRMS
  
  > IsomorphismAutomorphismGroupOfRMS( G ) __________________________attribute
  
  if  G  is  the automorphism group of a simple transformation semigroup, then
  IsomorphismAutomorphismGroupOfRMS    returns   a   GroupHomomorphismByImages
  (Reference:  GroupHomomorphismByImages)  from the automorphism group of G to
  the  automorphism  group of an isomorphic Rees matrix semigroup, obtained by
  using IsomorphismReesMatrixSemigroup (7.7-7).
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation([1,2,2,1,2]);;
    gap> g2:=Transformation([3,4,3,4,4]);;
    gap> g3:=Transformation([3,4,3,4,3]);;
    gap> g4:=Transformation([4,3,3,4,4]);;
    gap> cs5:=Semigroup(g1,g2,g3,g4);;
    gap> AutomorphismGroup(cs5);
    <group of size 16 with 3 generators>
    gap> IsomorphismAutomorphismGroupOfRMS(last);
    [ SemigroupHomomorphism ( <semigroup with 4 generators>-><semigroup with 
        4 generators>), SemigroupHomomorphism ( <semigroup with 
        4 generators>-><semigroup with 4 generators>), 
      SemigroupHomomorphism ( <semigroup with 4 generators>-><semigroup with 
        4 generators>) ] -> 
    [ [ (1,4)(2,3)(5,6), IdentityMapping( Group( [ (1,2) ] ) ), 
          [ (), (1,2), (1,2), (), (), () ] ], 
      [ (1,3,4,2), IdentityMapping( Group( [ (1,2) ] ) ), 
          [ (), (), (), (), (), (1,2) ] ], 
      [ (1,3)(2,4), IdentityMapping( Group( [ (1,2) ] ) ), 
          [ (), (), (), (), (), (1,2) ] ] ] 
    	
  ------------------------------------------------------------------
  
  7.7-2 IsomorphismPermGroup
  
  > IsomorphismPermGroup( G ) _______________________________________attribute
  
  if    G    satisfies    IsAutomorphismGroupOfSimpleSemigp    (7.4-4),   then
  IsomorphismPermGroup returns an isomorphism from G to a permutation group by
  composing  the  result  f  of IsomorphismAutomorphismGroupOfRMS (7.7-1) on G
  with the result of IsomorphismPermGroup on Range(f).
  
  if G satisfies IsAutomorphismGroupOfRMS (7.4-7) or IsAutomorphismGroupOfRZMS
  (7.4-8),  then  IsomorphismPermGroup  returns  an  isomorphism  from  G to a
  permutation group acting either on the elements of S or on itself, whichever
  gives a permutation group of lower degree.
  
  if  G  is  a  transformation  semigroup  that  satisfies  IsGroupAsSemigroup
  (5.2-3),  then  IsomorphismPermGroup  returns  an  isomorphism from G to the
  permutation  group obtained by applying AsPermOfRange (2.3-2) to any element
  of G.
  
  if   G   is   a   group   H-class   of   a  transformation  semigroup,  then
  IsomorphismPermGroup  returns an isomorphism from G to the permutation group
  obtained by applying AsPermOfRange (2.3-2) to any element of G.
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation([3,3,2,6,2,4,4,6]);;
    gap> g2:=Transformation([5,1,7,8,7,5,8,1]);;
    gap> cs1:=Semigroup(g1,g2);;
    gap> AutomorphismGroup(cs1);
    <group of size 12 with 2 generators>
    gap> IsomorphismPermGroup(last);
    [ SemigroupHomomorphism ( <semigroup with 2 generators>-><semigroup with 
        2 generators>), SemigroupHomomorphism ( <semigroup with 
        2 generators>-><semigroup with 2 generators>) ] -> 
    [ (1,11,2,12,3,10)(4,8,5,9,6,7), (1,6)(2,5)(3,4)(7,10)(8,12)(9,11) ]
    gap> Size(cs1);
    96
    gap> a:=IdempotentNC([[1,3,4],[2,5],[6],[7],[8]],[3,5,6,7,8])*(3,5);;
    gap> b:=IdempotentNC([[1,3,4],[2,5],[6],[7],[8]],[3,5,6,7,8])*(3,6,7,8);;
    gap> S:=Semigroup(a,b);;
    gap> IsGroupAsTransSemigroup(S);
    true
    gap> IsomorphismPermGroup(S);
    SemigroupHomomorphism ( <semigroup with 2 generators>->Group(
    [ (3,5), (3,6,7,8) ]))
    gap> gens:=[Transformation([3,5,3,3,5,6]), Transformation([6,2,4,2,2,6])];;
    gap> S:=Semigroup(gens);;
    gap> H:=GroupHClassOfGreensDClass(GreensDClassOfElement(S, Elements(S)[1]));
    {Transformation( [ 2, 2, 2, 2, 2, 6 ] )}
    gap> IsomorphismPermGroup(H);
    SemigroupHomomorphism ( {Transformation( [ 2, 2, 2, 2, 2, 6 ] )}->Group(()))
    	
  ------------------------------------------------------------------
  
  7.7-3 IsomorphismFpSemigroup
  
  > IsomorphismFpSemigroup( S ) _____________________________________attribute
  
  returns   an   isomorphism  to  a  finitely  presented  semigroup  from  the
  transformation  semigroup  S.  This  currently works by running the function
  FroidurePinExtendedAlg (FroidurePinExtendedAlg???) in the library.
  
  If   S   satisfies   IsMonoid   (Reference:   IsMonoid),   use  the  command
  IsomorphismFpMonoid (7.7-4) instead.
  
  ---------------------------  Example  ----------------------------
    gap> gens:=[ Transformation( [1,8,11,2,5,16,13,14,3,6,15,10,7,4,9,12 ] ), 
    >   Transformation( [1,16,9,6,5,8,13,12,15,2,3,4,7,10,11,14] ), 
    >   Transformation( [1,3,7,9,1,15,5,11,13,11,13,3,5,15,7,9 ] ) ];
    gap> S:=Semigroup(gens);
    <semigroup with 3 generators>
    gap> IsomorphismFpSemigroup(last);
    SemigroupHomomorphismByImages ( <trans. semigroup of size 16 with 
    3 generators>->Semigroup( [ s1, s2, s3 ] ))
    	
  ------------------------------------------------------------------
  
  7.7-4 IsomorphismFpMonoid
  
  > IsomorphismFpMonoid( S ) ________________________________________attribute
  
  returns   an   isomorphism   to   a   finitely  presented  monoid  from  the
  transformation   monoid   S.   Currently   works  by  running  the  function
  FroidurePinExtendedAlg (FroidurePinExtendedAlg???) in the library.
  
  If  S  satisfies  IsSemigroup  (Reference:  IsSemigroup),  use  the  command
  IsomorphismFpSemigroup (7.7-3) instead.
  
  ---------------------------  Example  ----------------------------
    gap> x:=Transformation([2,3,4,5,6,7,8,9,1]);;
    gap> y:=Transformation([4,2,3,4,5,6,7,8,9]);;
    gap> S:=Monoid(x,y);;
    gap> IsomorphismFpMonoid(last);
    SemigroupHomomorphismByImages ( <trans. semigroup of size 40266 with 
    3 generators>->Monoid( [ m1, m2 ], ... ))
    gap> Length(RelationsOfFpMonoid(Range(last)));
    932
    	
  ------------------------------------------------------------------
  
  7.7-5 IsomorphismSemigroups
  
  > IsomorphismSemigroups( S, T ) ___________________________________operation
  
  this  operation returns an isomorphism from the semigroup S to the semigroup
  T if one exists and returns fail otherwise.
  
  Please  note:  this  function  currently  only  works  for zero groups, zero
  semigroups, Rees matrix semigroups, and Rees 0-matrix semigroups.
  
  Please note: if grape is not loaded, then this function will not work when S
  and        T       satisfy       IsReesZeroMatrixSemigroup       (Reference:
  IsReesZeroMatrixSemigroup).
  
  ---------------------------  Example  ----------------------------
    gap> ZG1:=ZeroGroup(Group((1,2,3,5,4)));
    <zero group with 2 generators>
    gap> ZG2:=ZeroGroup(Group((1,2,3,4,5)));
    <zero group with 2 generators>
    gap> IsomorphismSemigroups(ZG1, ZG2);
    SemigroupHomomorphismByImagesOfGens ( <zero group with 
    2 generators>-><zero group with 2 generators>)
    gap> ZG2:=ZeroGroup(Group((1,2,3,4)));
    <zero group with 2 generators>
    gap> IsomorphismSemigroups(ZG1, ZG2);
    fail
    gap> IsomorphismSemigroups(ZeroSemigroup(5),ZeroSemigroup(5));
    IdentityMapping( <zero semigroup with 5 elements> )
    gap> IsomorphismSemigroups(ZeroSemigroup(5),ZeroSemigroup(6));
    fail
    gap> gens:=[ Transformation( [ 4, 4, 8, 8, 8, 8, 4, 8 ] ), 
    >   Transformation( [ 8, 2, 8, 2, 5, 5, 8, 8 ] ), 
    >   Transformation( [ 8, 8, 3, 7, 8, 3, 7, 8 ] ), 
    >   Transformation( [ 8, 6, 6, 8, 6, 8, 8, 8 ] ) ];;
    gap> S:=Semigroup(gens);;
    gap> D:=GreensDClasses(S);;
    gap> rms1:=Range(IsomorphismReesMatrixSemigroupOfDClass(D[1]));;
    gap> rms2:=Range(IsomorphismReesMatrixSemigroupOfDClass(D[4]));;
    gap> IsomorphismSemigroups(rms1, rms2);
    [ (2,3)(5,6), IdentityMapping( <zero group with 2 generators> ), 
      [ ZeroGroup(()), ZeroGroup(()), ZeroGroup(()), ZeroGroup(()), 
          ZeroGroup(()), ZeroGroup(()) ] ]
    gap> IsomorphismSemigroups(rms2, rms1);
    [ (2,3)(5,6), IdentityMapping( <zero group with 2 generators> ), 
      [ ZeroGroup(()), ZeroGroup(()), ZeroGroup(()), ZeroGroup(()),  
          ZeroGroup(()), ZeroGroup(()) ] ]
    gap> rms2:=Range(IsomorphismReesMatrixSemigroupOfDClass(D[2]));
    Group(())
    gap> IsomorphismSemigroups(rms2, rms1);
    fail
    gap> rms2:=RandomReesZeroMatrixSemigroup(5,5,5);
    Rees Zero Matrix Semigroup over <zero group with 2 generators>
    gap> IsomorphismSemigroups(rms2, rms1);
    fail
    gap> rms2:=RandomReesMatrixSemigroup(5,5,5);
    Rees Matrix Semigroup over Group([ (1,2)(3,4,5), (2,4,3), (1,4,5,3), 
      (1,4,5,2) ])
    gap> IsomorphismSemigroups(rms2, rms1);
    fail
    gap> IsomorphismSemigroups(rms1, rms2);
    fail
    	
  ------------------------------------------------------------------
  
  7.7-6 IsomorphismReesMatrixSemigroupOfDClass
  
  > IsomorphismReesMatrixSemigroupOfDClass( D ) _____________________attribute
  
  The principal factor of the D-class D is the semigroup with elements D and 0
  and  multiplication  x*y  defined  to  be  the  product  xy in the semigroup
  containing D if xy in D and 0 otherwise.
  
  IsomorphismReesMatrixSemigroupOfDClass   returns  an  isomorphism  from  the
  principal  factor  of  the D-class D to a Rees matrix, Rees 0-matrix or zero
  semigroup,  as  given  by the Rees-Suschewitsch Theorem; see [How95, Theorem
  3.2.3].
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation( [ 4, 6, 3, 8, 5, 6, 10, 4, 3, 7 ] );;
    gap> g2:=Transformation( [ 5, 6, 6, 3, 8, 6, 3, 7, 8, 4 ] );;
    gap> g3:=Transformation( [ 8, 6, 3, 2, 8, 10, 9, 2, 6, 2 ] );;
    gap> m23:=Monoid(g1,g2,g3);;
    gap> D:=GreensDClasses(m23)[17];
    {Transformation( [ 7, 6, 6, 6, 7, 4, 8, 6, 6, 6 ] )}
    gap> IsomorphismReesMatrixSemigroupOfDClass(D);
    SemigroupHomomorphism ( {Transformation( [ 7, 6, 6, 6, 7, 4, 8, 6, 6, 6 
     ] )}-><zero semigroup with 3 elements>)
    gap> D:=GreensDClasses(m23)[77];
    {Transformation( [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ] )}
    gap> IsomorphismReesMatrixSemigroupOfDClass(D);
    SemigroupHomomorphism ( {Transformation( [ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 
     ] )}->Rees Matrix Semigroup over Group(()))
    gap> D:=GreensDClasses(m23)[1];
    {Transformation( [ 1 .. 10 ] )}
    gap> IsomorphismReesMatrixSemigroupOfDClass(D);
    SemigroupHomomorphism ( {Transformation( [ 1 .. 10 ] )}->Group(()))
    gap> D:=GreensDClasses(m23)[23];
    {Transformation( [ 6, 7, 3, 6, 6, 6, 6, 6, 7, 6 ] )}
    gap> IsomorphismReesMatrixSemigroupOfDClass(D);
    SemigroupHomomorphism ( {Transformation( [ 6, 7, 3, 6, 6, 6, 6, 6, 7, 6 
     ] )}->Rees Zero Matrix Semigroup over <zero group with 3 generators>)
    	
  ------------------------------------------------------------------
  
  7.7-7 IsomorphismReesMatrixSemigroup
  
  > IsomorphismReesMatrixSemigroup( S ) _____________________________operation
  
  returns an isomorphism from the (completely) simple transformation semigroup
  S to a Rees matrix semigroup, as given by the Rees-Suschewitsch Theorem; see
  [How95, Theorem 3.2.3].
  
  ---------------------------  Example  ----------------------------
    gap> g1:=Transformation( [ 2, 3, 4, 5, 1, 8, 7, 6, 2, 7 ] );;
    gap> g2:=Transformation( [ 2, 3, 4, 5, 6, 8, 7, 1, 2, 2 ] );;
    gap> cs2:=Semigroup(g1,g2);;
    gap> IsomorphismReesMatrixSemigroup(cs2);
    SemigroupHomomorphism ( <semigroup with 
    2 generators>->Rees Matrix Semigroup over Group(
    [ (2,5)(3,8)(4,6), (1,6,3)(5,8) ]))
  ------------------------------------------------------------------