Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 1985

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (nq) - Chapter 4: Examples</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
</head>
<body>


<div class="pcenter"><table class="chlink"><tr><td class="chlink1">Goto Chapter: </td><td><a href="chap0.html">Top</a></td><td><a href="chap1.html">1</a></td><td><a href="chap2.html">2</a></td><td><a href="chap3.html">3</a></td><td><a href="chap4.html">4</a></td><td><a href="chap5.html">5</a></td><td><a href="chapBib.html">Bib</a></td><td><a href="chapInd.html">Ind</a></td></tr></table><br /></div>
<p><a id="s0ss0" name="s0ss0"></a></p>

<h3>4. Examples</h3>

<p><a id="s1ss0" name="s1ss0"></a></p>

<h4>4.1 Right Engel elements</h4>

<p>An old problem in the context of Engel elements is the question: Is a right n-Engel element left n-Engel? It is known that the answer is no. For details about the history of the problem, see <a href="chapBib.html#biBNewmanNickel94">[MW94]</a>. In this paper the authors show that for n&gt;4 there are nilpotent groups with right n-Engel elements no power of which is a left n-Engel element. The insight was based on computations with the ANU NQ which we reproduce here. We also show the cases 5&gt;n.</p>


<table class="example">
<tr><td><pre>

gap&gt; RequirePackage( "nq" );
true
gap&gt; ##  SetInfoLevel( InfoNQ, 1 );
gap&gt; ##
gap&gt; ##  setup calculation
gap&gt; ##
gap&gt; et := ExpressionTrees( "a", "b", "x" );
[ a, b, x ]
gap&gt; a := et[1];; b := et[2];; x := et[3];;
gap&gt; 
gap&gt; ##
gap&gt; ##  define the group for n = 2,3,4,5
gap&gt; ##
gap&gt; 
gap&gt; rengel := LeftNormedComm( [a,x,x] );
Comm( a, x, x )
gap&gt; G := rec( generators := et, relations := [rengel] );
rec( generators := [ a, b, x ], relations := [ Comm( a, x, x ) ] )
gap&gt; ## The following is equivalent to:
gap&gt; ##   NilpotentQuotient( : input_string := NqStringExpTrees( G, [x] ) )
gap&gt; H := NilpotentQuotient( G, [x] );
Pcp-group with orders [ 0, 0, 0 ]
gap&gt; LeftNormedComm( [ H.2,H.1,H.1 ] );
id
gap&gt; LeftNormedComm( [ H.1,H.2,H.2 ] );
id

</pre></td></tr></table>

<p>This shows that each right 2-Engel element in a finitely generated nilpotent group is a left 2-Engel element. Note that the group above is the largest nilpotent group generated by two elements, one of which is right 2-Engel. Every nilpotent group generated by an arbitrary element and a right 2-Engel element is a homomorphic image of the group H.</p>


<table class="example">
<tr><td><pre>

gap&gt; rengel := LeftNormedComm( [a,x,x,x] );
Comm( a, x, x, x )
gap&gt; G := rec( generators := et, relations := [rengel] );
rec( generators := [ a, b, x ], relations := [ Comm( a, x, x, x ) ] )
gap&gt; H := NilpotentQuotient( G, [x] );
Pcp-group with orders [ 0, 0, 0, 0, 0, 4, 2, 2 ]
gap&gt; LeftNormedComm( [ H.1,H.2,H.2,H.2 ] );
id
gap&gt; h := LeftNormedComm( [ H.2,H.1,H.1,H.1 ] );
g6^2*g7*g8
gap&gt; Order( h );
4

</pre></td></tr></table>

<p>The element h has order 4. In a nilpotent group without 2-torsion a right 3-Engel element is left 3-Engel.</p>


<table class="example">
<tr><td><pre>

gap&gt; rengel := LeftNormedComm( [a,x,x,x,x] );
Comm( a, x, x, x, x )
gap&gt; G := rec( generators := et, relations := [rengel] );
rec( generators := [ a, b, x ], relations := [ Comm( a, x, x, x, x ) ] )
gap&gt; H := NilpotentQuotient( G, [x] );
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 12, 0, 5, 10, 2, 0, 30, 
  5, 2, 5, 5, 5, 5 ]
gap&gt; LeftNormedComm( [ H.1,H.2,H.2,H.2,H.2 ] );
id
gap&gt; h := LeftNormedComm( [ H.2,H.1,H.1,H.1,H.1 ] );
g9*g10^2*g11^10*g12^5*g13^2*g14^8*g15*g16^6*g17^10*g18*g20^4*g21^4*g22^2*g23^2
gap&gt; Order( h );
60

</pre></td></tr></table>

<p>The previous calculation shows that in a nilpotent group without 2,3,5-torsion a right 4-Engel element is left 4-Engel.</p>


<table class="example">
<tr><td><pre>

gap&gt; rengel := LeftNormedComm( [a,x,x,x,x,x] );
Comm( a, x, x, x, x, x )
gap&gt; G := rec( generators := et, relations := [rengel] );
rec( generators := [ a, b, x ], relations := [ Comm( a, x, x, x, x, x ) ] )
gap&gt; H := NilpotentQuotient( G, [x], 9 );
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 30, 
  0, 0, 30, 0, 3, 6, 0, 0, 10, 30, 0, 0, 0, 0, 30, 30, 0, 0, 3, 6, 5, 2, 0, 
  2, 408, 2, 0, 0, 0, 10, 10, 30, 10, 0, 0, 0, 3, 3, 3, 2, 204, 6, 6, 0, 10, 
  10, 10, 2, 2, 2, 0, 300, 0, 0, 18 ]
gap&gt; LeftNormedComm( [ H.1,H.2,H.2,H.2,H.2,H.2 ] );
id
gap&gt; h := LeftNormedComm( [ H.2,H.1,H.1,H.1,H.1,H.1 ] );;
gap&gt; Order( h );
infinity

</pre></td></tr></table>

<p>Finally, we see that in a torsion-free group a right 5-Engel element need not be a left 5-Engel element.</p>


<div class="pcenter">
<table class="chlink"><tr><td><a href="chap0.html">Top of Book</a></td><td><a href="chap3.html">Previous Chapter</a></td><td><a href="chap5.html">Next Chapter</a></td></tr></table>
<br />


<div class="pcenter"><table class="chlink"><tr><td class="chlink1">Goto Chapter: </td><td><a href="chap0.html">Top</a></td><td><a href="chap1.html">1</a></td><td><a href="chap2.html">2</a></td><td><a href="chap3.html">3</a></td><td><a href="chap4.html">4</a></td><td><a href="chap5.html">5</a></td><td><a href="chapBib.html">Bib</a></td><td><a href="chapInd.html">Ind</a></td></tr></table><br /></div>

</div>

<hr />
<p class="foot">generated by <a href="http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>