Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 2814

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

<html><head><title>[SONATA-tutorial] 5 Some interesting nearrings</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP004.htm">Previous</a>] [<a href ="CHAP006.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<h1>5 Some interesting nearrings</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP005.htm#SECT001">Nearrings generated by endomorphisms on a group</a>
<li> <A HREF="CHAP005.htm#SECT002">More information than just the size</a>
<li> <A HREF="CHAP005.htm#SECT003">Centralizer nearrings</a>
<li> <A HREF="CHAP005.htm#SECT004">Finding affine complete groups</a>
</ol><p>
<p>
One motivation for creating SONATA was to study
particular near-rings associated with a given
group <var>G</var>: the <strong>inner automorphism nearring</strong>
<var>I(G)</var>, the <strong>automorphism nearring</strong> <var>A(G)</var>, and
the <strong>endomorphism nearring</strong> <var>E(G)</var>. 
The nearring <var>I(G)</var> is the smallest subnearring of the
nearring <var>M(G)</var> of all mappings from <var>G</var> into <var>G</var> that
contains all inner automorphisms; similarly <var>A(G)</var> and <var>E(G)</var>
are defined. citemeldrum85:NATLWG contains 
a lot of information on these near-rings.
<p>
<p>
<h2><a name="SECT001">5.1 Nearrings generated by endomorphisms on a group</a></h2>
<p><p>
Let us compute the nearring <var>I(A<sub>4</sub>)</var>, which is the nearring of all
zero-symmetric polynomial functions on the group <var>A<sub>4</sub></var>.
<pre>
    gap&gt; I := InnerAutomorphismNearRing ( AlternatingGroup ( 4 ) );
    InnerAutomorphismNearRing( Alt( [ 1 .. 4 ] ) )
    gap&gt; Size (I);
    3072
</pre>
<p>
For a polynomial function, we can ask for a polynomial that induces it.
<p>
<pre>
    gap&gt; p := Random( I );
    &lt;mapping: AlternatingGroup( [ 1 .. 4 ] ) -&gt; AlternatingGroup( [ 1 .. 4 ] ) &gt;
    gap&gt; PrintAsTerm( p );
     - g1 + g2 - x - g2 + g1 + g2 + g1 - x + g2 - x + 2 * g1 - 
    3 * x - g1 + x + g2 - x - g2 + g1 + x - g1 + x - g1 + x + 
    g1 + x - g2 - x + g2 - g1 - x + g1 + x
    gap&gt; GeneratorsOfGroup( AlternatingGroup( 4 ) );
    [ (1,2,3), (2,3,4) ]
</pre>
<p>
We get a polynomial (not necessarily the shortest possible polynomial) that induces
the polynomial function. The expressions <code>g1</code> and <code>g2</code> stand for the first and second
generator of the group respectively.
<p>
Now we compute the nearring that is additively generated by the automorphisms
of the dihedral group of order 8. This nearring is usually called
<var>A (D<sub>8</sub>)</var>.  
<pre>
    gap&gt; A := AutomorphismNearRing ( DihedralGroup ( 8 ) );
    AutomorphismNearRing( &lt;pc group of size 8 with 3 generators&gt; )
    gap&gt; Size (A);
    32
</pre>
<p>
Much attention has been devoted to the nearring <var>E (S<sub>4</sub>)</var>, which
is the nearring additively generated by the endomorphisms on the
symmetric group on four letters.
<pre>
    gap&gt; EndS4 := EndomorphismNearRing ( SymmetricGroup ( 4 ) );
    EndomorphismNearRing( Sym( [ 1 .. 4 ] ) )
    gap&gt; Size ( EndS4 );
    927712935936
    gap&gt; F1 := last;;
    gap&gt; Collected ( Factors( F1 ));
    [ [ 2, 35 ], [ 3, 3 ] ]
</pre>
In the last example, we have computed the size 
of <var>E (S<sub>4</sub>)</var> as <var>2<sup>35</sup> cdot3<sup>3</sup></var>.
<p>
We have also included some less popular examples of nearrings.
One of those is the nearring <var>H (G, U)</var>. This is the nearring
that is generated by all endomorphisms on <var>G</var> whose range lies in
the subgroup <var>U</var> of <var>G</var>.
We do an example on the group <var>16/8</var> in the classification of
Thomas and Wood. It is a subdirectly irreducible group of order 16,
and the factor modulo the monolith is isomorphic to the elementary abelian group
of order 8.
<pre>
    gap&gt; G := GTW16_8;
    16/8
    gap&gt; U := First ( NormalSubgroups( G ), N -&gt; Size(N) = 2 );
    Group([ ( 1, 5)( 2,10)( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) ])
    gap&gt; HGU := RestrictedEndomorphismNearRing (G, U);
    RestrictedEndomorphismNearRing( 16/8, Group(
    [ ( 1, 5)( 2,10)( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) ]) )
    gap&gt; Size (HGU);
    8
</pre>
It is interesting to compare this nearring to the nearring of
all functions <var>e</var> in the endomorphism nearring <var>E (G)</var> with the
property <var>e (G) subseteqU</var>.
<pre>
    gap&gt; EofG := EndomorphismNearRing ( G );
    EndomorphismNearRing( 16/8 )
    gap&gt; EGU := NoetherianQuotient ( EofG, U, G );
    NoetherianQuotient( Group(
    [ ( 1, 5)( 2,10)( 3,11)( 4,12)( 6,15)( 7,16)( 8, 9)(13,14) ]) ,16/8 )
    gap&gt; Size ( EGU );
    128
</pre>
If <var>N</var> is a transformation nearring on <var>G</var>, and <var>U, V</var> are subsets of <var>G</var> then
<code>NoetherianQuotient (N,U,V)</code> returns the collection of all mappings
<var>f inN</var> such that <var>f(V) subseteqU</var>.
<p>
<p>
<h2><a name="SECT002">5.2 More information than just the size</a></h2>
<p><p>
In this section, we use SONATA to produce some interesting information
about the nearring <var>I(S<sub>3</sub>)</var>, which is the nearring of all zero-symmetric polynomial
functions on the group <var>S<sub>3</sub></var>. 
<p>
<pre>
    gap&gt; G := SymmetricGroup ( 3 );
    Sym( [ 1 .. 3 ] )
    gap&gt; I := InnerAutomorphismNearRing ( G );
    InnerAutomorphismNearRing( Sym( [ 1 .. 3 ] ) )
    gap&gt; Size( I );
    54
</pre>
<p>
Now we would like to see how many of these 54 functions are idempotent.
First a complicated version.
<pre>
    gap&gt; Filtered ( I,
    &gt;       t -&gt; ForAll( G, g -&gt; Image(t, g) = Image(t, Image(t, g)) ) );;
    gap&gt; Length( last );
    18
</pre>
Now a simpler version.
<pre>
    gap&gt; Filtered ( I, i -&gt; i^2 = i );;
    gap&gt; Length( last );
    18
</pre>
<p>
<p>
<h2><a name="SECT003">5.3 Centralizer nearrings</a></h2>
<p><p>
Let <var>Phi</var> be a subset of the endomorphisms of a group <var>G</var>.
Then we define <var>M<sub>Phi</sub> (G)</var> as the set of all
mappings <var>m : G toG</var> that satisfy <var>m circvarphi=
varphicircm</var> for all <var>varphiinPhi</var>.
This set is closed under addition and composition of
mappings, and hence a subnearring of <var>M(G)</var>.
The set <var>M<sub>Phi</sub> (G)</var> is called the centralizer nearring
of <var>G</var> determined by <var>Phi</var>. It need not necessarily be
zero-symmetric.
<p>
In the following examples, we compute the centralizer nearring
<var>M<sub>End (S_3)</sub> (S<sub>3</sub>)</var>.
<pre>
    gap&gt; G := SymmetricGroup( 3 );
    Sym( [ 1 .. 3 ] )
    gap&gt; endos := Endomorphisms( G );
    [ [ (1,2,3), (1,2) ] -&gt; [ (), () ], [ (1,2,3), (1,2) ] -&gt; [ (), (1,3) ],
      [ (1,2,3), (1,2) ] -&gt; [ (), (2,3) ], [ (1,2,3), (1,2) ] -&gt; [ (), (1,2) ],
      [ (1,2,3), (1,2) ] -&gt; [ (1,2,3), (1,3) ],
      [ (1,2,3), (1,2) ] -&gt; [ (1,3,2), (1,2) ],
      [ (1,2,3), (1,2) ] -&gt; [ (1,3,2), (1,3) ],
      [ (1,2,3), (1,2) ] -&gt; [ (1,2,3), (2,3) ],
      [ (1,2,3), (1,2) ] -&gt; [ (1,2,3), (1,2) ],
      [ (1,2,3), (1,2) ] -&gt; [ (1,3,2), (2,3) ] ]
    gap&gt; C := CentralizerNearRing( G, endos );
    CentralizerNearRing( Sym( [ 1 .. 3 ] ), ... )
    gap&gt; Size ( C );
    6
</pre>
<p>
An <strong>ideal</strong> of a nearring <var>(N,+,*)</var> is a subset <var>I</var> such that
<var>I</var> is a normal subgroup of <var>(N,+)</var>, and
for all <var>i inI</var>, <var>n,m inN</var>, we have
<var>(m+i)*n - m*n inI</var> and <var>n*i inI</var>. Ideals are in
one-to-one correspondence to the congruence relations
on <var>(N,+,*)</var>.
<p>
Do you think that this nearring is simple? Alan Cannon does not think so,
and, in fact, SONATA tells us:
<pre>
    gap&gt; I := NearRingIdeals( C );
    [ &lt; nearring ideal &gt;, &lt; nearring ideal &gt;, &lt; nearring ideal &gt;, 
      &lt; nearring ideal &gt; ]
    gap&gt; List( I, Size );
    [ 1, 2, 3, 6 ]
</pre>
So, we have ideals of size 1,2,3 and 6.
<p>
<p>
<h2><a name="SECT004">5.4 Finding affine complete groups</a></h2>
<p><p>
We shall now construct all compatible (= congruence preserving) functions
on the group 16/6 (Thomas-Wood-notation); this is the <var>6<sup>th</sup></var> group
of order <var>16</var> in citethomaswood80:GT.
It is the direct
product of <var>D<sub>8</sub></var> and <var>C<sub>2</sub></var>. Let <var>G</var> be this group. We first
construct the nearring <var>P(G)</var> of all polynomial functions.
Then we construct all those functions that can be interpolated
at every subset of <var>G</var> with at most two elements by a function in
<var>P(G)</var> by using the function <code>LocalInterpolationNearRing</code>: 
these are the compatible functions on <var>G</var> (see citePilz:Nearrings). 
<pre>
    gap&gt; P := PolynomialNearRing( GTW16_6 );
    PolynomialNearRing( 16/6 )
    gap&gt; Size( P );
    256
    gap&gt; C := LocalInterpolationNearRing(P, 2);
    LocalInterpolationNearRing( PolynomialNearRing( 16/6 ), 2 )
    gap&gt; Size (C);
    256
</pre>
Hence the group <var>16/6</var> is <var>1</var>-affine complete. A much faster algorithm for
computing the nearring of compatible functions can be used.
<pre>
    gap&gt; C := CompatibleFunctionNearRing( GTW16_6 );
    &lt; transformation nearring with 7 generators &gt;
    gap&gt; Size(C);
    256;
</pre>
Finally, the fastest way to decide 1-affine completeness is to use the function 
<code>Is1AffineComplete</code>.
<pre>
    gap&gt; Is1AffineComplete( GTW16_6 );
    true
</pre>
<p>
When studying polynomial functions on direct products of groups, it is
important to know the smallest positive number <var>l</var> such
that the zero-function can be expressed by a term
<var>a<sub>1</sub> + e<sub>1</sub>.x + a<sub>2</sub> + cdots+ e<sub>n</sub>.x + a<sub>n+1</sub></var> with
<var>sume<sub>i</sub> = l</var>. 
This <var>l</var> has been called the <strong>length</strong> of the group
by S.D.Scott.
<p>
<pre>
    gap&gt; ScottLength( SymmetricGroup( 3 ) );
    2
</pre>
<p>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP004.htm">Previous</a>] [<a href ="CHAP006.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>SONATA-tutorial manual<br>November 2008
</address></body></html>