Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 2950

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

  
  6 Useful properties and functions
  
  
  6.1 Semisimple group algebras of finite groups
  
  6.1-1 IsSemisimpleZeroCharacteristicGroupAlgebra
  
  > IsSemisimpleZeroCharacteristicGroupAlgebra( KG ) _________________property
  
  The input must be a group ring.
  
  Returns  true  if  the  input  KG is a semisimple group algebra (7.2) over a
  field of characteristic zero (that is if G is finite), and false otherwise.
  
  ---------------------------  Example  ----------------------------
    
    gap> CG:=GroupRing( GaussianRationals, DihedralGroup(16) );;
    gap> IsSemisimpleZeroCharacteristicGroupAlgebra( CG );
    true
    gap> FG:=GroupRing( GF(2), SymmetricGroup(3) );;                    
    gap> IsSemisimpleZeroCharacteristicGroupAlgebra( FG );
    false
    gap> f := FreeGroup("a");
    <free group on the generators [ a ]>
    gap> Qf:=GroupRing(Rationals,f);
    <algebra-with-one over Rationals, with 2 generators>
    gap> IsSemisimpleZeroCharacteristicGroupAlgebra(Qf);
    false
    
  ------------------------------------------------------------------
  
  6.1-2 IsSemisimpleRationalGroupAlgebra
  
  > IsSemisimpleRationalGroupAlgebra( KG ) ___________________________property
  
  The input must be a group ring.
  
  Returns  true  if  KG is a semisimple rational group algebra (7.2) and false
  otherwise.
  
  ---------------------------  Example  ----------------------------
    
    gap> QG:=GroupRing( Rationals, SymmetricGroup(4) );;       
    gap> IsSemisimpleRationalGroupAlgebra( QG );       
    true
    gap> CG:=GroupRing( GaussianRationals, DihedralGroup(16) );;               
    gap> IsSemisimpleRationalGroupAlgebra( CG );                              
    false
    gap> FG:=GroupRing( GF(2), SymmetricGroup(3) );;
    gap> IsSemisimpleRationalGroupAlgebra( FG );
    false
    
  ------------------------------------------------------------------
  
  6.1-3 IsSemisimpleANFGroupAlgebra
  
  > IsSemisimpleANFGroupAlgebra( KG ) ________________________________property
  
  The input must be a group ring.
  
  Returns true if KG is the group algebra of a finite group over a subfield of
  a cyclotomic extension of the rationals and false otherwise.
  
  ---------------------------  Example  ----------------------------
    
    gap> IsSemisimpleANFGroupAlgebra( GroupRing( NF(5,[4]) , CyclicGroup(28) ) );
    true
    gap> IsSemisimpleANFGroupAlgebra( GroupRing( GF(11) , CyclicGroup(28) ) );
    false
    
  ------------------------------------------------------------------
  
  6.1-4 IsSemisimpleFiniteGroupAlgebra
  
  > IsSemisimpleFiniteGroupAlgebra( KG ) _____________________________property
  
  The input must be a group ring.
  
  Returns  true  if  KG  is a semisimple finite group algebra (7.2), that is a
  group  algebra  of  a  finite group G over a field K of order coprime to the
  order of G, and false otherwisse.
  
  ---------------------------  Example  ----------------------------
    
    gap> FG:=GroupRing( GF(5), SymmetricGroup(3) );;
    gap> IsSemisimpleFiniteGroupAlgebra( FG );
    true
    gap> KG:=GroupRing( GF(2), SymmetricGroup(3) );; 
    gap> IsSemisimpleFiniteGroupAlgebra( KG ); 
    false
    gap> QG:=GroupRing( Rationals, SymmetricGroup(4) );;
    gap> IsSemisimpleFiniteGroupAlgebra( QG );
    false
    
  ------------------------------------------------------------------
  
  
  6.2 Operations with group rings elements
  
  6.2-1 Centralizer
  
  > Centralizer( G, x ) _____________________________________________operation
  Returns:  A subgroup of a group G.
  
  The  input  should be formed by a finite group G and an element x of a group
  ring FH whose underlying group H contains G as a subgroup.
  
  Returns the centralizer of x in G.
  
  This  operation  adds  a  new method to the operation that already exists in
  GAP.
  
  ---------------------------  Example  ----------------------------
    
    gap> D16 := DihedralGroup(16);
    <pc group of size 16 with 4 generators>
    gap> QD16 := GroupRing( Rationals, D16 );
    <algebra-with-one over Rationals, with 4 generators>
    gap> a:=QD16.1;b:=QD16.2;
    (1)*f1
    (1)*f2
    gap> e := PrimitiveCentralIdempotentsByStrongSP( QD16)[3];;
    gap> Centralizer( D16, a);
    Group([ f1, f4 ])
    gap> Centralizer( D16, b);
    Group([ f2 ])
    gap> Centralizer( D16, a+b);
    Group([ f4 ])
    gap> Centralizer( D16, e);
    Group([ f1, f2 ])
    
  ------------------------------------------------------------------
  
  6.2-2 OnPoints
  
  > OnPoints( x, g ) ________________________________________________operation
  > \^( x, g ) ______________________________________________________operation
  Returns:  An element of a group ring.
  
  The input should be formed by an element x of a group ring FG and an element
  g in the underlying group G of FG.
  
  Returns  the  conjugate  x^g = g^-1 x g of x by g. Usage of x^g produces the
  same output.
  
  This  operation  adds  a  new method to the operation that already exists in
  GAP.
  
  The  following example is a continuation of the example from the description
  of Centralizer (6.2-1).
  
  ---------------------------  Example  ----------------------------
    
    gap> List(D16,x->a^x=a);
    [ true, true, false, false, true, false, false, true, false, false, false,
      false, false, false, false, false ]
    gap> List(D16,x->e^x=e);
    [ true, true, true, true, true, true, true, true, true, true, true, true,
      true, true, true, true ]
    gap> ForAll(D16,x->a^x=a);
    false
    gap> ForAll(D16,x->e^x=e);
    true
    
  ------------------------------------------------------------------
  
  6.2-3 AverageSum
  
  > AverageSum( RG, X ) _____________________________________________operation
  Returns:  An element of a group ring.
  
  The  input  must be composed of a group ring RG and a finite subset X of the
  underlying  group  G  of  RG.  The  order  of  X  must  be invertible in the
  coefficient ring R of RG.
  
  Returns  the  element  of  the group ring RG that is equal to the sum of all
  elements of X divided by the order of X.
  
  If  X  is  a  subgroup  of G then the output is an idempotent of RG which is
  central if and only if X is normal in G.
  
  ---------------------------  Example  ----------------------------
    
    gap> G:=DihedralGroup(16);;               
    gap> QG:=GroupRing( Rationals, G );;
    gap> FG:=GroupRing( GF(5), G );;
    gap> e:=AverageSum( QG, DerivedSubgroup(G) );
    (1/4)*<identity> of ...+(1/4)*f3+(1/4)*f4+(1/4)*f3*f4
    gap> f:=AverageSum( FG, DerivedSubgroup(G) ); 
    (Z(5)^2)*<identity> of ...+(Z(5)^2)*f3+(Z(5)^2)*f4+(Z(5)^2)*f3*f4
    gap> G=Centralizer(G,e);
    true
    gap> H:=Subgroup(G,[G.1]);
    Group([ f1 ])
    gap> e:=AverageSum( QG, H );
    (1/2)*<identity> of ...+(1/2)*f1
    gap> G=Centralizer(G,e);
    false
    gap> IsNormal(G,H);
    false
    
  ------------------------------------------------------------------
  
  
  6.3 Cyclotomic classes
  
  6.3-1 CyclotomicClasses
  
  > CyclotomicClasses( q, n ) _______________________________________operation
  Returns:  A partition of [ 0 .. n ].
  
  The input should be formed by two relatively prime positive integers.
  
  Returns the list q-cyclotomic classes  (7.17) modulo n.
  
  ---------------------------  Example  ----------------------------
    
    gap> CyclotomicClasses( 2, 21 );
    [ [ 0 ], [ 1, 2, 4, 8, 16, 11 ], [ 3, 6, 12 ], [ 5, 10, 20, 19, 17, 13 ],
      [ 7, 14 ], [ 9, 18, 15 ] ]
    gap> CyclotomicClasses( 10, 21 );
    [ [ 0 ], [ 1, 10, 16, 13, 4, 19 ], [ 2, 20, 11, 5, 8, 17 ],
      [ 3, 9, 6, 18, 12, 15 ], [ 7 ], [ 14 ] ]
    
  ------------------------------------------------------------------
  
  6.3-2 IsCyclotomicClass
  
  > IsCyclotomicClass( q, n, C ) ____________________________________operation
  
  The input should be formed by two relatively prime positive integers q and n
  and a sublist C of [ 0 .. n ].
  
  Returns  true  if  C  is  a  q-cyclotomic  class  (7.17)  modulo n and false
  otherwise.
  
  ---------------------------  Example  ----------------------------
    
    gap> IsCyclotomicClass( 2, 7, [1,2,4] );
    true
    gap> IsCyclotomicClass( 2, 21, [1,2,4] );
    false
    gap> IsCyclotomicClass( 2, 21, [3,6,12] );
    true
    
  ------------------------------------------------------------------
  
  
  6.4 Other commands
  
  6.4-1 InfoWedderga
  
  > InfoWedderga____________________________________________________info class
  
  InfoWedderga  is  a  special  Info  class  for Wedderga algorithms. It has 3
  levels: 0, 1 (default) and 2. To change the info level to k, use the command
  SetInfoLevel(InfoWedderga, k).
  
  In  the  example  below  we use this mechanism to see more details about the
  Wedderburn components each time when we call WedderburnDecomposition.
  
  ---------------------------  Example  ----------------------------
    
    gap> SetInfoLevel(InfoWedderga, 2);   
    gap> WedderburnDecomposition( GroupRing( CF(5), DihedralGroup( 16 ) ) );
    #I  Info version : [ [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ], [ 1, CF(5) ],
      [ 2, CF(5) ], [ 1, NF(40,[ 1, 31 ]), 8, [ 2, 7, 0 ] ] ]
    [ CF(5), CF(5), CF(5), CF(5), ( CF(5)^[ 2, 2 ] ), 
      <crossed product with center NF(40,[ 1, 31 ]) over AsField( NF(40,
        [ 1, 31 ]), CF(40) ) of a group of size 2> ]
    
  ------------------------------------------------------------------
  
  6.4-2 WEDDERGABuildManual
  
  > WEDDERGABuildManual(  ) __________________________________________function
  
  This  function  is  used  to build the manual in the following formats: DVI,
  PDF,  PS,  HTML  and text for online help. We recommend that the user should
  have  a  recent  and  fairly  complete  TeX  distribution. Since Wedderga is
  distributed  together  with  its manual, it is not necessary for the user to
  use  this  function.  Normally  it  is intended to be used by the developers
  only.  This  is  the  only  function of Wedderga which requires a UNIX/Linux
  environment.
  
  6.4-3 WEDDERGABuildManualHTML
  
  > WEDDERGABuildManualHTML(  ) ______________________________________function
  
  This  fuction is used to build the manual only in HTML format. This does not
  depend  on  the availability of the TeX installation and works under Windows
  and  MacOS  as well. Since Wedderga is distributed together with its manual,
  it  is  not  necessary  for  the  user  to use this function. Normally it is
  intended to be used by the developers only.