Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 3106

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

  
  6 Induced Constructions
  
  
  6.1 Induced crossed modules
  
  6.1-1 InducedXMod
  
  > InducedXMod( args ) ______________________________________________function
  > InducedCat1( args ) ______________________________________________function
  > IsInducedXMod( xmod ) ____________________________________________property
  > IsInducedCat1( cat1 ) ____________________________________________property
  > MorphismOfInducedXMod( xmod ) ___________________________________attribute
  
  A  morphism  of  crossed  modules  (sigma, rho) : cal X_1 -> cal X_2 factors
  uniquely  through an induced crossed module rho_* cal X_1 = (delta ~:~ rho_*
  S_1 -> R_2). Similarly, a morphism of cat1-groups factors through an induced
  cat1-group. Calculation of induced crossed modules of cal X also provides an
  algebraic  means  of determining the homotopy 2-type of homotopy pushouts of
  the  classifying space of cal X. For more background from algebraic topology
  see  references  in  \cite{BH1},  \cite{BW1},  \cite{BW2}.  Induced  crossed
  modules  and  induced  cat1-groups  also  provide  the  building  blocks for
  constructing pushouts in the categories XMod and Cat1.
  
  Data  for  the  cases  of  algebraic  interest  is provided by a conjugation
  crossed  module  cal X = (partial ~:~ S -> R) and a homomorphism iota from R
  to  a  third  group  Q.  The output from the calculation is a crossed module
  iota_*cal  X  = (delta ~:~ iota_*S -> Q) together with a morphism of crossed
  modules  cal  X -> iota_*cal X. When iota is a surjection with kernel K then
  iota_*S  =  [S,K]  (see  \cite{BH1}).  When iota is an inclusion the induced
  crossed module may be calculated using a copower construction \cite{BW1} or,
  in  the  case  when  R  is  normal  in  Q, as a coproduct of crossed modules
  (\cite{BW2}, but not yet implemented). When iota is neither a surjection nor
  an  inclusion,  iota  is written as the composite of the surjection onto the
  image  and  the  inclusion of the image in Q, and then the composite induced
  crossed module is constructed. These constructions use Tietze transformation
  routines in the library file tietze.gi.
  
  As  a  first,  surjective  example,  we  take for cal X the normal inclusion
  crossed  module  of a4 in s4, and for iota the surjection from s4 to s3 with
  kernel k4. The induced crossed module is isomorphic to X3.
  
  ---------------------------  Example  ----------------------------
    
    gap> s4gens := [ (1,2), (2,3), (3,4) ];;
    gap> s4 := Group( s4gens );; SetName(s4,"s4");
    gap> a4gens := [ (1,2,3), (2,3,4) ];;
    gap> a4 := Subgroup( s4, a4gens );;  SetName( a4, "a4" );
    gap> s3 := Group( (5,6),(6,7) );;  SetName( s3, "s3" );
    gap> epi := GroupHomomorphismByImages( s4, s3, s4gens, [(5,6),(6,7),(5,6)] );;
    gap> X4 := XModByNormalSubgroup( s4, a4 );;
    gap> indX4 := SurjectiveInducedXMod( X4, epi );
    [a4/ker->s3]
    gap> morX4 := MorphismOfInducedXMod( indX4 );
    [[a4->s4] => [a4/ker->s3]]
    
  ------------------------------------------------------------------
  
  For  a  second,  injective example we take for cal X the conjugation crossed
  module (partial ~:~ c4 -> d8) of Chapter 3, and for iota the inclusion incd8
  of d8 in d16. The induced crossed module has c4 x c4 as source.
  
  ---------------------------  Example  ----------------------------
    
    gap> incd8 := RangeHom( inc8 );;
    gap> [ Source(incd8), Range(incd8), IsInjective(incd8) ];
    [ d8, d16, true ]
    gap> indX8 := InducedXMod( X8, incd8 );
    #I Simplified presentation for induced group :-
    <presentation with 2 gens and 3 rels of total length 12>
    #I  generators: [ f11, f14 ]
    #I  relators:
    #I  1.  4  [ 1, 1, 1, 1 ]
    #I  2.  4  [ 2, 2, 2, 2 ]
    #I  3.  4  [ 2, -1, -2, 1 ]
    #I induced group has Size: 16
    #I factor 1 is abelian  with invariants: [ 4, 4 ]
    i*([c4->d8])
    gap> Display( indX8 );
    Crossed module i*([c4->d8]) :-
    : Source group has generators:
      [ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15),
      ( 1, 4,11, 5)( 2, 7,14, 8)( 3, 9,15,10)( 6,12,16,13) ]
    : Range group d16 has generators:
      [ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]
    : Boundary homomorphism maps source generators to:
      [ (11,13,15,17)(12,14,16,18), (11,17,15,13)(12,18,16,14) ]
    : Action homomorphism maps range generators to automorphisms:
      (11,12,13,14,15,16,17,18) --> { source gens -->
    [ ( 1, 5,11, 4)( 2, 8,14, 7)( 3,10,15, 9)( 6,13,16,12),
      ( 1, 3, 6, 2)( 4, 9,12, 7)( 5,10,13, 8)(11,15,16,14) ] }
      (12,18)(13,17)(14,16) --> { source gens -->
    [ ( 1, 3, 6, 2)( 4, 9,12, 7)( 5,10,13, 8)(11,15,16,14),
      ( 1, 5,11, 4)( 2, 8,14, 7)( 3,10,15, 9)( 6,13,16,12) ] }
      These 2 automorphisms generate the group of automorphisms.
    gap> morX8 := MorphismOfInducedXMod( indX8 );
    [[c4->d8] => i*([c4->d8])]
    gap> Display( morX8 );
    Morphism of crossed modules :-
    : Source = [c4->d8] with generating sets:
      [ (11,13,15,17)(12,14,16,18) ]
      [ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]
    :  Range = i*([c4->d8]) with generating sets:
      [ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15),
      ( 1, 4,11, 5)( 2, 7,14, 8)( 3, 9,15,10)( 6,12,16,13) ]
      [ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]
    : Source Homomorphism maps source generators to:
      [ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15) ]
    : Range Homomorphism maps range generators to:
      [ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]
    
  ------------------------------------------------------------------
  
  For  a third example we take the identity mapping on s3 as boundary, and the
  inclusion  of  s3 in s4 as iota. The induced group is a general linear group
  GL(2,3).
  
  ---------------------------  Example  ----------------------------
    
    gap> s3b := Subgroup( s4, [ (2,3), (3,4) ] );;  SetName( s3b, "s3b" );
    gap> indX3 := InducedXMod( s4, s3b, s3b );
    #I Simplified presentation for induced group :-
    <presentation with 2 gens and 4 rels of total length 33>
    #I  generators: [ f11, f112 ]
    #I  relators:
    #I  1.  2  [ 1, 1 ]
    #I  2.  3  [ 2, 2, 2 ]
    #I  3.  12  [ 1, -2, 1, 2, 1, 2, 1, -2, 1, 2, 1, 2 ]
    #I  4.  16  [ -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1 ]
    #I induced group has Size: 48
    #I IdGroup = [ [  48,  29 ] ]
    i*([s3b->s3b])
    gap> isoX3 := IsomorphismGroups( Source( indX3 ), GeneralLinearGroup(2,3) );
    [ (1,2)(4,5)(6,8), (2,3,4)(5,6,7) ] ->
    [ [ [ Z(3)^0, 0*Z(3) ], [ Z(3), Z(3) ] ],
      [ [ Z(3)^0, Z(3)^0 ], [ 0*Z(3), Z(3)^0 ] ] ]
    
  ------------------------------------------------------------------
  
  6.1-2 AllInducedXMods
  
  > AllInducedXMods( Q ) ____________________________________________operation
  
  This  function calculates all the induced crossed modules InducedXMod( Q, P,
  M  ),  where  P runs over all conjugacy classes of subgroups of Q and M runs
  over all non-trivial subgroups of P.