Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 3144

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!--                                                                     -->
<!--  util.xml             XMOD documentation             Chris Wensley  -->
<!--                                                        & Murat Alp  -->
<!--                                                                     -->
<!--  $Id: util.xml,v 2.11 2008/11/13 gap Exp $                          -->
<!--                                                                     -->
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<?xml version="1.0" encoding="ISO-8859-15"?>
  <!-- <M>Id: util.xml,v 2.11  Exp <M> -->

<Chapter Label="chap-util">
<Heading>Utility functions</Heading>

By a utility function we mean a {\GAP} function which is

<List>
<Item>
needed by other functions in this package,
</Item>
<Item>
not (as far as we know) provided by the standard &GAP; library,
</Item>
<Item>
more suitable for inclusion in the main library than in this package.
</Item>
</List>


<Section><Heading>Inclusion and Restriction Mappings</Heading>

<Index>inclusion mapping</Index>
<Index>restriction mapping</Index>

These two functions have been moved to the <Package>gpd</Package> package, 
but are still documented here. 
<ManSection>
   <Oper Name="InclusionMappingGroups"
         Arg="G H" />
   <Oper Name="RestrictionMappingGroups"
         Arg="hom src rng" />
   <Oper Name="MappingToOne"
         Arg="G H" />
<Description>
The first set of utilities concerns inclusion and restriction mappings.
Restriction may apply to both the source and the range of the map.
The map <C>incd8</C> is the inclusion of <C>d8</C> in <C>d16</C> 
used in Section <Ref Sect="sect-oper-mor" />.
</Description>
</ManSection>

<Example>
<![CDATA[
gap> Print( incd8, "\n" );
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ] ->
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ]
gap> imd8 := Image( incd8 );;
gap> resd8 := RestrictionMappingGroups( incd8, c4, imd8 );;
gap> Source( res8 );  Range( res8 );
c4
Group([ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ])
gap> MappingToOne( c4, imd8 );
[ (11,13,15,17)(12,14,16,18) ] -> [ () ]
]]>
</Example>
</Section>


<Section><Heading>Endomorphism Classes and Automorphisms</Heading>

<Index>endomorphism classes</Index>
<ManSection>
   <Func Name="EndomorphismClasses"
         Arg="grp case" />
   <Attr Name="EndoClassNaturalHom"
         Arg="class" />
   <Attr Name="EndoClassIsomorphism"
         Arg="class" />
   <Attr Name="EndoClassConjugators"
         Arg="class" />
   <Attr Name="AutoGroup"
         Arg="class" />
<Description>
The monoid of endomorphisms of a group is used when calculating
the monoid of derivations of a crossed module and when determining 
all the cat1-structures on a group.
<P/>
An endomorphism <M>\epsilon</M> of <M>R</M> with image <M>H'</M> 
is determined by
<List>
<Item>
a normal subgroup <M>N</M> of <M>R</M> and a permutation representation
<M>\theta : R/N \to Q</M> of the quotient, giving a projection
<M>\theta \circ \nu : R \to Q</M>, where <M>\nu : R \to R/N</M>
is the natural homomorphism;
</Item>
<Item>
an automorphism <M>\alpha</M> of <M>Q</M>;
</Item>
<Item>
a subgroup <M>H'</M> in a conjugacy class <M>[H]</M> of subgroups of <M>R</M> 
isomorphic to <M>Q</M> having representative <M>H</M>, an isomorphism 
<M>\phi : Q \cong H</M>, and a conjugating element <M>c \in R</M>
such that <M>H^c = H'</M>.
</Item>
</List>
<P/>
Then <M>\epsilon</M> takes values
<Display>
\epsilon r ~=~ (\phi\alpha\theta\nu\,r)^c~.
</Display>
Endomorphisms are placed in the same class if they have the same
choice of <M>N</M> and <M>[H]</M>,
and so the number of endomorphisms is
<Display>
|{\rm End}(R)| ~=~ \sum_{{\rm classes}} |{\rm Aut}(Q)|.|[H]|~.
</Display>
The function <C>EndomorphismClasses( &lt;grp&gt;, &lt;case&gt; )</C> 
may be called in three ways:
<List>
<Item>
case 1 includes automorphisms and the zero map,
</Item><Item>
case 2 excludes automorphisms and the zero map,
</Item><Item>
case 3 is when <C>N</C> intersects <C>H</C>  trivially.
</Item>
</List>
</Description>
</ManSection>

<Example>
<![CDATA[
gap> end8 := EndomorphismClasses( d8, 1 );;
gap> Length( end8 );
13
gap> e4 := end8[4];
<enumerator>
gap> EndoClassNaturalHom( e4 );
GroupHomomorphismByImages( d8, Group( [ f1 ] ),
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ], [ f1, f1 ] )
gap> EndoClassIsomorphism( e4 );
Pcgs([ f1 ]) -> [ (11,13)(14,18)(15,17) ]
gap> EndoClassConjugators( e4 );
[ (), (12,18)(13,17)(14,16) ]
gap> AutoGroup( e4 );
Group( [ Pcgs([ f1 ]) -> [ f1 ] ] )
gap> L := List( end8, e -> Length(EndoClassConjugators(e)) * Size(AutoGroup(e)) );
[ 8, 1, 2, 2, 1, 2, 2, 1, 2, 2, 6, 6, 1 ]
gap> Sum( L );
36
]]>
</Example>

<ManSection>
   <Oper Name="InnerAutomorphismByNormalSubgroup"
         Arg="G N" />
   <Prop Name="IsGroupOfAutomorphisms"
         Arg="A" />
<Description>
Inner automorphisms of a group <C>G</C> 
by the elements of a normal subgroup <C>N</C>
are calculated with the first of these functions, 
usually with <C>G</C> = <C>N</C>.
</Description>
</ManSection>

<Example>
<![CDATA[
gap> autd8 := AutomorphismGroup( d8 );;
gap> innd8 := InnerAutomorphismsByNormalSubgroup( d8, d8 );;
gap> GeneratorsOfGroup( innd8 );
[ InnerAutomorphism( d8, (11,13,15,17)(12,14,16,18) ),
  InnerAutomorphism( d8, (12,18)(13,17)(14,16) ) ]
gap> IsGroupOfAutomorphisms( innd8 );
true 
]]>
</Example>
</Section>


<Section><Heading>Abelian Modules</Heading>
<Index>abelian module</Index>

<ManSection>
   <Oper Name="AbelianModuleObject"
         Arg="grp act" />
   <Prop Name="IsAbelianModule"
         Arg="obj" />
   <Attr Name="AbelianModuleGroup"
         Arg="obj" />
   <Attr Name="AbelianModuleAction"
         Arg="obj" />
<Description>
An abelian module is an abelian group together with a group action.
These are used by the crossed module constructor <C>XModByAbelianModule</C>.
<P/>
The resulting <C>Xabmod</C> is isomorphic to the output from 
<C>XModByAutomorphismGroup( k4 );</C>.
</Description>
</ManSection>

<Example>
<![CDATA[
gap> x := (6,7)(8,9);;  y := (6,8)(7,9);;  z := (6,9)(7,8);;
gap> k4 := Group( x, y );  SetName( k4, "k4" );
gap> s3 := Group( (1,2), (2,3) );;  SetName( s3, "s3" );
gap> alpha := GroupHomomorphismByImages( k4, k4, [x,y], [y,x] );
gap> beta := GroupHomomorphismByImages( k4, k4, [x,y], [x,z] );
gap> aut := Group( alpha, beta );
gap> act := GroupHomomorphismByImages( s3, aut, [(1,2),(2,3)], [alpha,beta] );
gap> abmod := AbelianModuleObject( k4, act );
&lt;enumerator&rt;
gap> Xabmod := XModByAbelianModule( abmod );
[k4->s3]
]]>
</Example>
</Section>


<Section><Heading>Distinct and Common Representatives</Heading>
<Index>distinct and common representatives</Index>

<ManSection>
   <Oper Name="DistinctRepresentatives"
         Arg="list" />
   <Oper Name="CommonRepresentatives"
         Arg="list" />
   <Oper Name="CommonTransversal"
         Arg="grp subgrp" />
   <Oper Name="IsCommonTransversal"
         Arg="grp subgrp list" />
<Description>
The final set of utilities deal with lists of subsets of <M>[1 \ldots n]</M>
and construct systems of distinct and common representatives using
simple, non-recursive, combinatorial algorithms.
<P/>
When <M>L</M> is a set of <M>n</M> subsets of <M>[1 \ldots n]</M> 
and the Hall condition is satisfied
(the union of any <M>k</M> subsets has at least <M>k</M> elements),
a set of distinct representatives exists.
<P/>
When <M>J,K</M> are both lists of <M>n</M> sets, 
the function <C>CommonRepresentatives</C> returns two lists: 
the set of representatives, 
and a permutation of the subsets of the second list.
It may also be used to provide a common transversal
for sets of left and right cosets of a subgroup <M>H</M> of a group <M>G</M>,
although a greedy algorithm is usually quicker.
</Description>
</ManSection>

<Example>
<![CDATA[
gap> J := [ [1,2,3], [3,4], [3,4], [1,2,4] ];;
gap> DistinctRepresentatives( J );
[ 1, 3, 4, 2 ]
gap> K := [ [3,4], [1,2], [2,3], [2,3,4] ];;
gap> CommonRepresentatives( J, K );
[ [ 3, 3, 3, 1 ], [ 1, 3, 4, 2 ] ]
gap> CommonTransversal( d16, c4 );
[ (), (12,18)(13,17)(14,16), (11,12,13,14,15,16,17,18),
  (11,12)(13,18)(14,17)(15,16) ]
gap> IsCommonTransversal( d16, c4, [ (), c, d, c*d ] );
true
]]>
</Example>

</Section>

</Chapter>