Sophie

Sophie

distrib > Mandriva > 2010.0 > i586 > media > contrib-release > by-pkgid > 91213ddcfbe7f54821d42c2d9e091326 > files > 736

gap-system-packages-4.4.12-5mdv2010.0.i586.rpm

\documentclass[12pt]{article}
\usepackage{euler,palatino,amsfonts,vmargin,amsmath,amssymb}
\usepackage[arrow,matrix]{xy}
\setmarginsrb{1in}{1in}{1in}{1in}{0in}{0in}{0in}{0in}
\title{An Example \textsf{CRIME} calculation: 
The cohomology ring of $Q_8$}\author{}
\begin{document}
\maketitle

Let $G=Q_8=\left\langle x,y\left|
x^2=y^2=\left(xy\right)^2,x^4=1\right.\right\rangle
=\left\langle x,y,z\left|
x^2=y^2=z=\left(xy\right)^2,x^4=1\right.\right\rangle$.
Observe that $z$ in the second presentation is redundant,
but simplifies the notation later. In \textsf{GAP}, we execute
the following commands.
\begin{verbatim}
gap> G:=SmallGroup(8,4);
<pc group of size 8 with 3 generators>
gap> Pcgs(G);
Pcgs([ f1, f2, f3 ])
\end{verbatim}
Then a little manipulation in \textsf{ GAP}
reveals that \verb!f1!, \verb!f2!, and \verb!f3!,
correspond with $x$, $y$, and $z$
from the presentation above, and with $i$,
$j$, and $-1$ from the standard presentation 
of $Q_8$.

Let $k=\mathbb{F}_2$. It's well known that $k$
has a periodic minimal $kG$-projective resolution.
To see this, we start with the following commands.

\begin{verbatim}
gap> C:=CohomologyObject(G);
<object>
gap> ProjectiveResolution(C,10);
[ 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 ]
\end{verbatim}

\verb!ProjectiveResolution! returns the $kG$-ranks
of the terms of the minimal projective resolution.
These numbers are called the {\em Betti numbers}
of the resolution.
Therefore, this tells us that $k$ has a minimal 
$kG$-projective resolution 
\begin{equation}\label{res}
P_\ast:\qquad\begin{xy}\xymatrix{
\dots\ar[r]&kG\ar[r]^{\partial_4}
&kG\ar[r]^{\partial_3}
&\left(kG\right)^{\oplus 2}\ar[r]^{\partial_2}
&\left(kG\right)^{\oplus 2}\ar[r]^{\partial_1}
&kG\ar[r]^{\epsilon}
&k\ar[r]&0
}\end{xy}\end{equation}
We can see from (\ref{res}) that $P_\ast$ 
appears to be periodic, but we
confirm this below by looking at the boundary maps.
The map $\epsilon$ is the usual augmentation
$\epsilon\left(\sum_g\alpha_gg\right)
=\sum_g\alpha_g$.

Since $P_\ast$ is minimal, 
the cohomology groups $H^i\left(G\right)
=\mathrm{Ext}^i\left(k,k\right)$ are simply
\[\mathrm{Hom}_{kG}\left(P_i,k\right)=k^{b_i}.\]
Here, $b_i$ is the $\left(i+1\right)$st element
in the list returned by \verb!ProjectiveResolution!,
so the first element in this list is the dimension
of $P_0$. Thus, the Betti numbers give the 
ranks of the cohomology groups as well.

To look at the boundary maps, we need some notation.
Recall that for $G$ a $p$-group of size $p^n$ and $k$ a field of
characteristic $p$, which is exactly the situation
that we're in in this example, the group algebra $kG$ has
a basis
\begin{equation}
\mathcal{B}'=\left\{\left.\rule{0pt}{12pt} x_1^{a_1}x_2^{a_2}\dots x_n^{a_n}\right|
0\le a_1,a_2,\dots a_n\le p-1\right\}\end{equation}
where $x_1,x_2,\dots x_n$ is a polycyclic generating set for $G$.
In fact, the fact that $\mathcal{B'}$ is a basis merely expresses the
fact the $x_1,x_2,\dots x_n$ is a polycyclic generating set.
In the example $G=Q_8$, arranging the $\left(a_1,a_2,\dots, a_n\right)$'s 
in reverse lexicographic order, we have
\begin{align*}
\mathcal{B}'
&=\left(\begin{array}{cccccccc}1,&x,&y,&xy,&z,&xz,&yz,&xyz\end{array}\right)\\
&=\left(\begin{array}{cccccccc}1,&i,&j,&k,&-1,&-i,&-j,&-k\end{array}\right).
\end{align*}

However, a more computationally efficient basis of $kG$ is the following.
\begin{equation}
\mathcal{B}=\left\{\left.\rule{0pt}{12pt}\left(x_1-1\right)^{a_1}
\left(x_2-1\right)^{a_2}\dots \left(x_n-1\right)^{a_n}\right|
0\le a_1,a_2,\dots a_n\le p-1\right\}\end{equation}

Let $I=x+1$, $J=y+1$, and $K=xy+1$.
Observe that $I^2=J^2=z+1$.
Observe also that $K=I+J+IJ$. The element $K$ was included
to make the boundary maps below look more symmetric.
Then in the example $G=Q_8$ we have
\[\mathcal{B}=\left(\begin{array}{cccccccc}
1,&I,&J,&IJ,&I^2,&I^3,&I^2J,&I^3J\end{array}\right)\]

The boundary maps returned by \verb!BoundaryMaps! are with respect
to the basis $\mathcal{B}$.
\begin{verbatim}
gap> Display(BoundaryMap(C,1));
. 1 . . . . . .
. . 1 . . . . .
gap> Display(BoundaryMap(C,2));
. 1 . . . . . . . . 1 . . . . .
. . 1 . . . . . . 1 1 1 . . . .
gap> Display(BoundaryMap(C,3));
. . 1 . . . . . . 1 1 1 . . . .
gap> Display(BoundaryMap(C,4));
. . . . . . . 1
gap> Display(BoundaryMap(C,5));
. 1 . . . . . .
. . 1 . . . . .
\end{verbatim}
Observe first that $\partial_5=\partial_1$,
so we see that $P_\ast$ is in fact
periodic as mentioned above. 
The matrices for $\partial_n$ give only the image of $1_G$
from each direct factor of $P_n$, since the images of the
the other elements of $P_n$ are determined by linearity.
\footnote{Note to users: if the matrices giving the action
of $kG$ on itself with respect to $\mathcal{B}$, or the full
matrices for the $\partial_n$'s would be useful to users,
please let me know. I could include functions to return them,
but I hesitate to overload the user with superfluous information.}
For example, since \[\partial_1:P_1=kG\oplus kG\to P_0=kG,\]
the matrix returned above tells us that $\partial_1\left(1_G,0\right)=I$
and $\partial_1\left(0,1_G\right)=J$. Summarizing the information
above, we have the following.

\begin{equation}\label{boundary}
\partial_n=\begin{cases}
\begin{pmatrix}I\\J\end{pmatrix}&\text{if }n\equiv 1\pmod{4}\\
\begin{pmatrix}I&J\\J&K\end{pmatrix}&\text{if }n\equiv 2\pmod{4}\\
\begin{pmatrix}J&K\end{pmatrix}&\text{if }n\equiv 3\pmod{4}\\
\begin{pmatrix}I^3J\end{pmatrix}&\text{if }n\equiv 0\pmod{4}
\end{cases}\qquad\left(n\ge 1\right)
\end{equation}

The matrices in (\ref{boundary}) are meant to be multiplied on the right
as usual in \textsf{GAP}.

Now since $H^1\left(G\right)=\mathrm{Hom}_{kG}\left(P_1,k\right)$,
we have a natural basis 
$\left\{\eta_1,\eta_2\right\}$ of $H^1\left(G\right)$
where $\eta_1$ is the map sending $\left(1_G,0\right)\mapsto 1_k$
and $\left(0,1_G\right)\mapsto 0$ and $\eta_2$ is the other way
around. 

Then the following are chain maps representing $\eta_1$ and $\eta_2$.
\begin{equation}\label{eta12}
\begin{xy}\xymatrix{
P_3\ar[r]^{\left(\begin{smallmatrix}J&K\end{smallmatrix}\right)}
\ar[d]_{\left(\begin{smallmatrix}0&1\end{smallmatrix}\right)}
&P_2\ar[r]^{\left(\begin{smallmatrix}I&J\\J&K\end{smallmatrix}\right)}
\ar[d]_{\left(\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right)}
&P_1\ar[rd]^{\eta_1}
\ar[d]_{\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)}\\
P_2\ar[r]_{\left(\begin{smallmatrix}I&J\\J&K\end{smallmatrix}\right)}
&P_1\ar[r]_{\left(\begin{smallmatrix}I\\J\end{smallmatrix}\right)}
&P_0\ar[r]^\epsilon
&k
}\end{xy}\qquad
\begin{xy}\xymatrix{
P_3\ar[r]^{\left(\begin{smallmatrix}J&K\end{smallmatrix}\right)}
\ar[d]_{\left(\begin{smallmatrix}1&1\end{smallmatrix}\right)}
&P_2\ar[r]^{\left(\begin{smallmatrix}I&J\\J&K\end{smallmatrix}\right)}
\ar[d]_{\left(\begin{smallmatrix}0&1\\1+J&1\end{smallmatrix}\right)}
&P_1\ar[rd]^{\eta_2}
\ar[d]_{\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)}\\
P_2\ar[r]_{\left(\begin{smallmatrix}I&J\\J&K\end{smallmatrix}\right)}
&P_1\ar[r]_{\left(\begin{smallmatrix}I\\J\end{smallmatrix}\right)}
&P_0\ar[r]^\epsilon
&k
}\end{xy}
\end{equation}
In the rows of the diagrams in (\ref{eta12}) we have copies
of $P_\ast$, while in the columns, we have maps making the diagrams
commute. These maps were produced by inspection and by \dots
well, let's just say that I used \textsf{GAP} a tiny bit.
Fortunately, this is exactly what the \textsf{CRIME} package
does for us, as we will see below.

For the purpose of multiplication,
the pictures in (\ref{eta12}) represent
$\eta_1$ and $\eta_2$, so the composition
of the two pictures represents the product,
as in the following picture.

\begin{equation}\label{prod}
\begin{xy}\xymatrix{
P_3\ar[r]
\ar[d]_{\left(\begin{smallmatrix}0&1\end{smallmatrix}\right)}
&P_2\ar[r]
\ar[d]_{\left(\begin{smallmatrix}1&0\\0&1\end{smallmatrix}\right)}
&P_1\ar[rd]^{\eta_1}
\ar[d]_{\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)}\\
P_2\ar[r]
\ar[d]_{\left(\begin{smallmatrix}0&1\\1+J&1\end{smallmatrix}\right)}
&P_1\ar[r]\ar[dr]^{\eta_2}
\ar[d]_{\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)}
&P_0\ar[r]^\epsilon
&k\\
P_1\ar[r]
&P_0\ar[r]^\epsilon
&k
}\end{xy}
\end{equation}

From (\ref{prod}), we can see that $\eta_1\eta_2=\zeta_2$
where $\left\{\zeta_1,\zeta_2\right\}$ is the natural basis of
$H^2\left(G\right)$.
This is the map going from $P_2$ in the top row to $k$
in the bottom, as in the diagrams in (\ref{eta12}).

By composing the first diagram with itself, we find that
$\eta_1^2=\zeta_1$.
Similarly, by more chain map production and composition,
we find that $\eta_2\zeta_2$ is a nonzero
element of degree 3, but that no product of 
elements of degree $<4$ produces
a nonzero element of degree 4.

Let $\left\{\xi\right\}$ be the natural 
basis of $H^4\left(G\right)$.
We lift $\xi$ to a chain map.
\begin{equation}\label{xi}
\begin{xy}\xymatrix{
P_8\ar[r]^{\left(\begin{smallmatrix}I^3J\end{smallmatrix}\right)}
\ar[d]_1
&P_7\ar[r]^{\left(\begin{smallmatrix}J\\K\end{smallmatrix}\right)}
\ar[d]_1
&P_6\ar[r]^{\left(\begin{smallmatrix}I&J\\J&K\end{smallmatrix}\right)}
\ar[d]_1
&P_5\ar[r]^{\left(\begin{smallmatrix}I&J\end{smallmatrix}\right)}
\ar[d]_1
&P_4\ar[rd]^{\xi}\ar[d]^1\\
P_4\ar[r]_{\left(\begin{smallmatrix}I^3J\end{smallmatrix}\right)}
&P_3\ar[r]_{\left(\begin{smallmatrix}J\\K\end{smallmatrix}\right)}
&P_2\ar[r]_{\left(\begin{smallmatrix}I&J\\J&K\end{smallmatrix}\right)}
&P_1\ar[r]_{\left(\begin{smallmatrix}I&J\end{smallmatrix}\right)}\ar[r]
&P_0\ar[r]^\epsilon
&k
}\end{xy}
\end{equation}
This time, the production of the chain map is easy because
of the periodicity of $P_\ast$. 
From (\ref{xi}), we see that all the elements of degree 4--7 
arise as products of $\xi$ with elements of degree
0--3, which in turn are products of $\eta_1$ and $\eta_2$.

Thus, by recursion, we find that 
$\eta_1$, $\eta_2$, and $\xi$ generate the entire ring
$H^\ast\left(G\right)$.
This is precisely what \textsf{GAP} tells us from
the following commands.
\begin{verbatim}
gap> CohomologyGenerators(C,10);
[ 1, 1, 4 ]
gap> A:=CohomologyRing(C,10);
<algebra of dimension 17 over GF(2)>
gap> LocateGeneratorsInCohomologyRing(C);
[ v.2, v.3, v.7 ]
\end{verbatim}

\verb!CohomologyGenerators! merely tells us the
degrees of the generators, and they agree with
those which we computed above.

The ring returned by \verb!CohomologyRing! has basis 
\verb![A.1, A.2, .. A.17]! corresponding with 
the concatenation of the natural bases
of the $H^i\left(G\right)$'s. Thus, \verb!A.1!
is the identity element, \verb!A.2! and \verb!A.3!
correspond with $\eta_1$ and $\eta_2$, 
\verb!A.4! and \verb!A.5! correspond with $\zeta_1$ and $\zeta_2$,
etc. Observe that $17=\sum_{i=0}^{10} b_i$
which explains the dimension of \verb!A!. The true
cohomology ring is infinite-dimensional, so that
\verb!A! can be seen as a degree-10-truncation,
that is, 
$\mathtt{A}\cong H^\ast\left(G\right)/J_{>10}$ where
$J_{>10}$ is the subring of all elements of degree $>10$.

The following commands verify the calculations mentioned above.
\begin{verbatim}
gap> A.2^2;
v.4
gap> A.2*A.3;
v.5
gap> A.3*A.5;
v.6
\end{verbatim}

The command \verb!LocateGeneratorsInCohomologyRing! tells
us that $\eta_1$, $\eta_2$, and $\xi$ correspond with
\verb!A.2!, \verb!A.3!, and \verb!A.7!, which we had
already deduced by degree considerations, but if
$\dim H^4\left(G\right)$ had been greater than 1,
we wouldn't have known which element corresponded
with $\xi$.

Finally, \textsf{GAP} gives us a presentation of
$H^\ast\left(G\right)$ with the following command.
\begin{verbatim}
gap> CohomologyRelators(C,10);
[ [ z, y, x ], [ z^2+z*y+y^2, y^3 ] ]
\end{verbatim}
This tells us that
\[H^\ast\left(G\right)\cong k\left[z,y,x\right]
\left/\left(z^2+yz+y^2,y^3\right)\right.\]
is a polynomial ring in the variables $z$, $y$ and $x$, 
modulo the ideal generated by 
$z^2+yz+y^2$ and $y^3$.

\end{document}